Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 213: 105745, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33160957

RESUMEN

The riverine tsetse fly Glossina fuscipes fuscipes is a major vector of trypanosome pathogens causing African trypanosomiasis. This fly species uses a combination of olfactory and visual cues to locate its hosts. Previously, traps and targets baited with visual cues have been used in vector control, but the development of olfactory-based tools has been challenging. Recently, repellents have shown promise as olfactory-based tools in tsetse vector control. Here, we evaluated a three-component blend comprising 6-methyl-5-hepten-2-one, acetophenone and geranyl acetone (blend K), previously identified as a repellent for savannah tsetse flies in zebra skin odor, on G. f. fuscipes populations. Using a series of 6 × 6 randomized Latin square-designed experiments, G. f. fuscipes catches in biconical traps were monitored on four islands of Lake Victoria in western Kenya between July and September 2019, after the long rainy season. Traps were baited with blend K and individual components of this blend. The known tsetse repellent blend WRC (waterbuck repellent compounds) and trap alone were included as controls. Daily catch data in thirty-six replicate trials were analyzed using generalized linear model with negative binomial error structure using the package "MASS" in R. Treatment, day and site were set as predictor variables. Our results showed that, blend K significantly reduced G. f. fuscipes catches by 25.6% (P < 0.01) compared to the control trap alone but was not significantly different from WRC which reduced catches by 20.7% (P < 0.05). Of the individual compounds, geranyl acetone solely significantly reduced catches by 29.1% (P < 0.01) which did not differ from blend K or WRC. We conclude that geranyl acetone accounts for the repellent effect of blend K on the riverine tsetse fly, G. f. fuscipes, demonstrating the ecological importance of animal skin odors in the host-seeking behavior of medically-important tsetse fly vectors.


Asunto(s)
Acetofenonas , Control de Insectos/métodos , Repelentes de Insectos , Insectos Vectores , Terpenos , Moscas Tse-Tse , Animales , Equidae , Humanos , Repelentes de Insectos/química , Kenia , Odorantes , Piel/química , Olfato , Tripanosomiasis Africana/transmisión
2.
PLoS Negl Trop Dis ; 13(6): e0007460, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31181060

RESUMEN

BACKGROUND: African trypanosomosis, primarily transmitted by tsetse flies, remains a serious public health and economic challenge in sub-Saharan Africa. Interventions employing natural repellents from non-preferred hosts of tsetse flies represent a promising management approach. Although zebras have been identified as non-preferred hosts of tsetse flies, the basis for this repellency is poorly understood. We hypothesized that zebra skin odors contribute to their avoidance by tsetse flies. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the effect of crude zebra skin odors on catches of wild savannah tsetse flies (Glossina pallidipes Austen, 1903) using unbaited Ngu traps compared to the traps baited with two known tsetse fly management chemicals; a repellent blend derived from waterbuck odor, WRC (comprising geranylacetone, guaiacol, pentanoic acid and δ-octalactone), and an attractant comprising cow urine and acetone, in a series of Latin square-designed experiments. Coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) analyses of zebra skin odors identified seven electrophysiologically-active components; 6-methyl-5-hepten-2-one, acetophenone, geranylacetone, heptanal, octanal, nonanal and decanal, which were tested in blends and singly for repellency to tsetse flies when combined with Ngu traps baited with cow urine and acetone in field trials. The crude zebra skin odors and a seven-component blend of the EAD-active components, formulated in their natural ratio of occurrence in zebra skin odor, significantly reduced catches of G. pallidipesby 66.7% and 48.9% respectively, and compared favorably with the repellency of WRC (58.1%- 59.2%). Repellency of the seven-component blend was attributed to the presence of the three ketones 6-methyl-5-hepten-2-one, acetophenone and geranylacetone, which when in a blend caused a 62.7% reduction in trap catch of G. pallidipes. CONCLUSIONS/SIGNIFICANCE: Our findings reveal fundamental insights into tsetse fly ecology and the allomonal effect of zebra skin odor, and potential integration of the three-component ketone blend into the management toolkit for tsetse and African trypanosomosis control.


Asunto(s)
Equidae/fisiología , Repelentes de Insectos/análisis , Odorantes/análisis , Fenómenos Fisiológicos de la Piel , Moscas Tse-Tse/efectos de los fármacos , Moscas Tse-Tse/fisiología , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...