Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949179

RESUMEN

CTL recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells but also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM-1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes (TIL) and long-term survival of melanoma patients. Using MART-1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM-1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs. Superior costimulatory effects of DNAM-1 over CD28 involved enhanced TCR signaling, CTL killer function and polyfunctionality. Double transduction of human CTLs with TAA-specific TCR and NKRs resulted in strongly enhanced antigen sensitivity, without a reduction in the antigen specificity and selectivity of killer function. In addition, the elevation of NKR-Ligand expression on cancer cells by chemotherapy also increased CTL recognition of cancer cells expressing low levels of TAA. Our data help to explain the ability of self-antigens to mediate tumor rejection in the absence of autoimmunity and support the development of dual-targeting adoptive T cell therapies that use NKRs to enhance the potency and selectivity of recognition of TAA-expressing cancer cells.

2.
Cell Rep ; 43(7): 114445, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38968073

RESUMEN

Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.


Asunto(s)
Autofagia , Supervivencia Celular , Mieloma Múltiple , Transducción de Señal , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Humanos , Autofagia/efectos de los fármacos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ratones , Ácidos Grasos/metabolismo , Resistencia a Antineoplásicos , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética
3.
Nat Rev Immunol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054343

RESUMEN

Substantial progress in understanding T cell signalling, particularly with respect to T cell co-receptors such as the co-stimulatory receptor CD28, has been made in recent years. This knowledge has been instrumental in the development of innovative immunotherapies for patients with cancer, including immune checkpoint blockade antibodies, adoptive cell therapies, tumour-targeted immunostimulatory antibodies, and immunostimulatory small-molecule drugs that regulate T cell activation. Following the failed clinical trial of a CD28 superagonist antibody in 2006, targeted CD28 agonism has re-emerged as a technologically viable and clinically promising strategy for cancer immunotherapy. In this Review, we explore recent insights into the molecular functions and regulation of CD28. We describe how CD28 is central to the success of current cancer immunotherapies and examine how new questions arising from studies of CD28 as a clinical target have enhanced our understanding of its biological role and may guide the development of future therapeutic strategies in oncology.

4.
Commun Med (Lond) ; 4(1): 116, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871977

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy and bispecific T-cell engagers, which redirect T-cells to tumor antigens, have immensely benefitted patients with relapsed/refractory B-cell cancers. How these therapies differ in cardiotoxicity is underexplored. We used the World Health Organization pharmacovigilance database, VigiBase, to compare cardiotoxicity profiles between CD19-targeted CAR-T therapy and blinatumomab (a CD19/CD3-targeted bispecific T-cell engager). METHODS: Safety reports in VigiBase were filtered for diffuse large B-cell lymphoma (DLBCL, n = 17,479) and acute lymphocytic leukemia (ALL, n = 28,803) for all adverse reactions. Data were further filtered for patients taking CAR-T therapy or blinatumomab. Reporting odds ratios (ROR) and fatality rates were compared between CAR-T cell products (e.g. tisagenlecleucel and axicabtagene ciloleucel), and between CAR-T therapy and blinatumomab. RESULTS: Tisagenlecleucel is associated with cardiac failure (IC025 = 0.366) with fatality rates of 85.7% and 80.0% in DLBCL and pediatric ALL patients respectively. For DLBCL patients, axicabtagene ciloleucel has greater reporting for hypotension than tisagenlecleucel (ROR: 2.54; 95% CI: 1.28-5.03; p = 0.012), but tisagenlecleucel has higher fatality rates for hypotension than axicabtagene ciloleucel [50.0% (tisagenlecleucel) vs 5.6% (axicabtagene ciloleucel); p < 0.001]. Blinatumomab and tisagenlecleucel have similar fatality rates for hypotension in pediatric ALL patients [34.7% (tisagenlecleucel) vs 20.0% (blinatumomab); p = 0.66]. CONCLUSIONS: Tisagenlecleucel is associated with severe and fatal adverse cardiac events, with higher fatality rates for hypotension compared to axicabtagene ciloleucel in DLBCL patients, but similar hypotension fatality rates compared to blinatumomab in pediatric ALL patients. Effective management necessitates experienced physicians, including cardio-oncologists, skilled in interdisciplinary approaches to manage these toxicities.


Chimeric antigen receptor (CAR) T-cell therapy and blinatumomab are two new types of cancer therapies used to treat blood cancers that fail to respond to conventional chemotherapy. Our goal is to study if there are major differences in how these treatments affect the heart. We analyzed a large, global database of patients who had these treatments. We find that in a blood cancer called diffuse large B-cell lymphoma, two CAR-T cell therapies are linked to heart failure and low blood pressure. In another type of cancer, acute lymphocytic leukemia, CAR-T cell therapy is associated with heart failure and cardiac arrest. The study suggests that given the frequency and severity of these side effects, clinical care should involve an interdisciplinary team experienced in managing these serious side effects.

5.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38562904

RESUMEN

Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.

6.
Cell Mol Immunol ; 21(3): 260-274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233562

RESUMEN

Metabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism. ARS2 upregulation driven by CD28 signaling reinforced splicing factor recruitment to pre-mRNAs and affected approximately one-third of T-cell activation-induced alternative splicing events. Among these effects, the CD28-ARS2 axis suppressed the expression of the M1 isoform of pyruvate kinase in favor of PKM2, a key determinant of CD8+ T-cell glucose utilization, interferon gamma production, and antitumor effector function. Importantly, PKM alternative splicing occurred independently of CD28-driven PI3K pathway activation, revealing a novel means by which costimulation reprograms glucose metabolism in CD8+ T cells.


Asunto(s)
Empalme Alternativo , Antígenos CD28 , Antígenos CD28/metabolismo , Empalme Alternativo/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Linfocitos T CD8-positivos , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...