Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37915241

RESUMEN

Since the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported by water contact angle, nanomechanical, and electrochemical measurements. Reactive molecular dynamics simulations confirm the possibility of graphitization in the nanosecond time scale with the evolution of NH3, H2O, and CO2 gases. A thorough exploration of the lasing parameter space (wavelength, pulse energy, and number of pulses) was conducted with the aim of improving either electrochemical activity or photocurrent generation. Whereas the 532 nm laser pulses interacted mostly with the PDA coating, the 365 nm pulses were absorbed by both PDA and the substrate nanotubes, leading to a higher graphitization degree. The majority of the photocurrent and quantum efficiency enhancement is observed in the visible light between 400 and 550 nm. The proposed composite is applied as a photoelectrochemical (PEC) sensor of serotonin in nanomolar concentrations. Because of the suppressed recombination and facilitated charge transfer caused by the laser graphitization, the proposed composite exhibits significantly enhanced PEC performance. In the sensing application, it showed superior sensitivity and a limit of detection competitive with nonprecious metal materials.

2.
J Phys Chem C Nanomater Interfaces ; 127(20): 9584-9593, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37552778

RESUMEN

In this work, we study the electrodes with a periodic matrix of gold particles pattered by titanium dimples and modified by 3-mercaptopropionic acid (MPA) followed by CD147 receptor grafting for specific impedimetric detection of SARS-CoV-2 viral spike proteins. The synergistic DFT and MM/MD modeling revealed that MPA adsorption geometries on the Au-Ti surface have preferential and stronger binding patterns through the carboxyl bond inducing an enhanced surface coverage with CD147. Control of bonding at the surface is essential for oriented receptor assembling and boosted sensitivity. The complex Au-Ti electrode texture along with optimized MPA concentration is a crucial parameter, enabling to reach the detection limit of ca. 3 ng mL-1. Scanning electrochemical microscopy imaging and quantum molecular modeling were performed to understand the electrochemical performance and specific assembly of MPA displaying a free stereo orientation and not disturbed by direct interactions with closely adjacent receptors. This significantly limits nonspecific interceptor reactions, strongly decreasing the detection of receptor-binding domain proteins by saturation of binding groups. This method has been demonstrated for detecting the SARS virus but can generally be applied to a variety of protein-antigen systems. Moreover, the raster of the pattern can be tuned using various anodizing processes at the titania surfaces.

3.
J Hazard Mater ; 458: 131873, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379604

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have gained significant attention as emerging contaminants due to their persistence, abundance, and adverse health effects. Consequently, the urgent need for ubiquitous and effective sensors capable of detecting and quantifying PFAS in complex environmental samples has become a priority. In this study, we present the development of an ultrasensitive molecularly imprinted polymer (MIP) electrochemical sensor tailored by chemically vapour-deposited boron and nitrogen codoped diamond-rich carbon nanoarchitectures for the selective determination of perfluorooctanesulfonic acid (PFOS). This approach allows for a multiscale reduction of MIP heterogeneities, leading to improved selectivity and sensitivity in PFOS detection. Interestingly, the peculiar carbon nanostructures induce a specific distribution of binding sites in the MIPs that exhibit a strong affinity for PFOS. The designed sensors demonstrated a low limit of detection (1.2 µg L-1) and exhibited satisfactory selectivity and stability. To gain further insights into the molecular interactions between diamond-rich carbon surfaces, electropolymerised MIP, and the PFOS analyte, a set of density functional theory (DFT) calculations was performed. Validation of the sensor's performance was carried out by successfully determining PFOS concentrations in real complex samples, such as tap water and treated wastewater, with average recovery rates consistent with UHPLC-MS/MS results. These findings demonstrate the potential of MIP-supported diamond-rich carbon nanoarchitectures for water pollution monitoring, specifically targeting emerging contaminants. The proposed sensor design holds promise for the development of in situ PFOS monitoring devices operating under relevant environmental concentrations and conditions.

4.
Small ; 19(26): e2208265, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949366

RESUMEN

Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers. This provides the surface reconstruction impacting surficial populations of CC dimers, CH, CO groups, and COOH termination along with enhanced kinetics of their abstraction, as revealed by high-resolution core-level spectroscopies. A series of local densities of states were computed, showing a rich set of highly occupied and localized surface states for samples deposited in deuterium, negating the connotations of band bending. The introduction of enhanced incorporation of boron into (111) facet of diamond leads to the manifestation of surface electronic states below the Fermi level and above the bulk valence band edge. This unique electronic band structure affects the charge transfer kinetics, electron affinity, and diffusion field geometry critical for efficient electrolysis, electrocatalysis, and photoelectrochemistry.

5.
ACS Appl Mater Interfaces ; 15(12): 15848-15862, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36929712

RESUMEN

Paramount spin-crossover properties of the 3D-Hoffman metalorganic framework (MOF) [Fe(pz)2Pt(CN)4] are generally described on the basis of the ligand field theory, which provides adequate insight into theoretical and simulation analysis of spintronic complexes. However, the ligand field approximation does not take into account the 3D periodicity of the actual complex lattice and surface effects and therefore cannot predict a full-scale periodic structure without utilizing more advanced methods. Therefore, in this paper, the electronic properties of the exemplar MOF were analyzed from the band structure perspective in low-spin (LS) and high-spin (HS) states. The density-of-states spectra determined for both spin-up and spin-down electrons of Fe d6 orbitals indicate spin-orbital splitting and delocalization for HS due to spin polarization in the iron atom ligand field. Presence of the surface states in the real crystal causes a red shift of the metal-metal charge transfer (MMCT) and metal-ligand charge transfer (MLCT) peaks for both HS and LS states. The addition of residual water molecules and disorder among the pyrazine rings reveal additional influences on the positions of the pyrazine band and, therefore, on the absorption spectra of the crystal. The results show a magnification of the peak correlated with the MLCT in the HS state and a significant red shift of the LS characteristic absorption band. The presented approach involving band structure analysis delivers a more complete image of the electronic properties of the [Fe(pz)2Pt(CN)4] crystalline network and can be a landmark for insightful studies of other MOFs.

6.
J Phys Chem Lett ; 13(34): 7972-7979, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35984347

RESUMEN

Mechanisms of charge transport in molecular junctions involving hydrogen bonds are complex and remain mostly unclear. This study is focused on the elucidation of the electron transfer in a molecular device consisting of two boron-doped diamond interfaces bound with an aromatic linker and a hydrogen bonding surrogating molecule. The projected local density of states (PLODS) analysis coupled with transmission spectra and current-voltage (I-V) simulations show that hydrogen bonding through electron-donating hydroxyl groups in the aromatic linker facilitates electron transfer, while the electron-withdrawing carboxyl group inhibits electron transfer across the junction. Moreover, slight variations in the geometry of hydrogen bonding lead to significant changes in the alignment of the energy levels and positions of the transmission modes. As a result, we observe the switching of the electron transport mechanism from tunneling to hopping accompanied by a change in the shape of the I-V curves and current magnitudes. These results give important information on the tailoring of the electronic properties of molecular junctions.

7.
ACS Nano ; 16(8): 13183-13198, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35868019

RESUMEN

The importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls (BCNWs) with an electropolymerized polydopamine/polyzwitterion (PDA|PZ) coating revealing tunable mechanical and electrochemical properties. Zwitterions are codeposited with PDA and noncovalently incorporated into a structure. This approach causes a specific separation of the diffusion fields generated by each nanowall during electrochemical reactions, thus increasing the contribution of the steady-state currents in the amperometric response. This phenomenon has a profound effect on the sensing properties, leading to a 4-fold enhancement of the sensitivity (3.1 to 14.3 µA cm-2 µM-1) and a 5-fold decrease of the limit of detection (505 to 89 nM) in comparison to the pristine BCNWs. Moreover, as a result of the antifouling capabilities of the incorporated zwitterions, this enhancement is preserved in bovine serum albumin (BSA) with a high protein concentration. The presence of zwitterion facilitates the transport of dopamine in the direction of the electrode by intermolecular interactions such as cation-π and hydrogen bonds. On the other hand, polydopamine units attached to the surface form molecular pockets driven by hydrogen bonds and π-π interactions. As a result, the intermediate state of dopamine-analyte oxidation is stabilized, leading to the enhancement of the sensing properties.


Asunto(s)
Carbono , Dopamina , Carbono/química , Técnicas Electroquímicas , Electrodos , Neurotransmisores
8.
Langmuir ; 38(31): 9597-9610, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35894869

RESUMEN

The complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 µm, where the dominating patterns are (111) and (200) crystallographic planes. The AuNCs significantly impact the electrochemical performance of the investigated electrode [indium-tin oxide (ITO), glassy carbon (GC), and bulk gold] systems driven by surface electrons promoting the catalytic effect. Cyclic voltammetry in combination with scanning electrochemical microscopy allowed us to decipher the molecular mechanism of substrate-induced electrostatic assembly of gold nanocube arrays, revealing that the accelerated electrocatalytic effect should be attributed to the confinement of the heterogeneous diffusion fields with tremendous electrochemically active surface area variations. AuNC drop-casting at ITO, GC, and Au led to various mechanisms of heterogeneous charge transfer; only in the case of GC did the decoration significantly increase the electrochemically active surface area (EASA) and ferrocyanide redox kinetics. For ITO and Au substrates, AuNC drop-casting decreases system dimensionality rather than increasing the EASA, where Au-Au self-diffusion was also observed. Interactions of the gold, ITO, and GC surfaces with themselves and with surfactant CTAB and ferrocyanide molecules were investigated using density functional theory.

9.
J Biomed Mater Res B Appl Biomater ; 110(3): 679-690, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34592065

RESUMEN

This work focuses on the fabrication of non-enzymatic glucose sensing materials based on laser-formed Au nanoparticles embedded in Ti-textured substrates. Those materials possess good catalytic activity toward glucose oxidation in 0.1 × phosphate buffered saline as well as resistance to some interferants, such as ascorbic acid, urea, and glycine. The electrodes are further coated with three different polymers, that is, Nafion, photo-crosslinked poly(zwitterions) based on sulfobetaine methacrylate, and a hybrid membrane consisting of both polymers. Both the optimal integrity of the material and its catalytic activity toward glucose oxidation were maintained by the hybrid membranes with a large excess of poly(zwitterions) (mass ratio 20:1). The chemical structures of the as-formed membranes are confirmed by Fourier transform infrared spectroscopy. Due to the zwitterionic nature of the coating, the electrodes are resistant to biofouling and maintain electrochemical activity toward glucose for 4 days. Moreover, due to the synergistic effect of both Nafion and poly(zwitterions), the interference from the two compounds, namely, from acetylsalicylic acid and acetaminophen, was diminished. Besides the presence of polymer membranes, the electrode possesses a sensitivity of 36.8 µA cm-2  mM-1 in the linear range of 0.4-12 mM, while the limit of detection was estimated to be 23 µM. Finally, the electrodes are stable, and their response is not altered even by 1,000 bending cycles.


Asunto(s)
Oro , Nanopartículas del Metal , Técnicas Electroquímicas/métodos , Electrodos , Glucosa/química , Oro/química , Nanopartículas del Metal/química , Oxidación-Reducción
10.
Bioelectrochemistry ; 135: 107575, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32506003

RESUMEN

We focus here on a novel approach to analysing the mechanisms of interference phenomena in glucose sensing, taking into account the changes within the Nafion layer deposited on the active surface. Several electrochemical techniques were used to verify the sustainability of catalytic properties of the electrode material after exposure to different compounds, i.e. ascorbic acid (AA), glycine, urea, acetylsalicylic acid (AsA), and acetaminophen (AAp). Through analysis of impedance data, we concluded that AAp and AsA were trapped permanently in the Nafion membrane, which significantly affected results repeatability. These observations were also confirmed by FT-IR investigations of the membrane after its immersion in solutions containing different interfering species. Moreover, after exposure to AsA and, unexpectedly, large concentrations of urea, the catalytic properties were completely lost, which, in consequence, make sensor reuse impossible. Such behaviour was justified by the chain reorganisation and swelling. Mechanisms involving adsorption onto the interphase and absorption in the membrane were proposed as key factors responsible for deterioration of membrane functionality and were confronted with FT-IR investigations. Following that, application of Nafion for non-invasive glucose sensor protection is unsatisfactory and cannot be considered for multiple detection procedures, especially taking into account biological fluids full of different interfering species.


Asunto(s)
Polímeros de Fluorocarbono/química , Glucosa/análisis , Materiales Inteligentes , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...