Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmacol Ther ; 248: 108466, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301330

RESUMEN

Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.


Asunto(s)
Melanoma , MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , MicroARNs/genética , MicroARNs/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , ARN Largo no Codificante/genética , ARN Circular
2.
iScience ; 25(9): 104962, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36060076

RESUMEN

Our understanding of miRNA activity at cellular resolution is thwarted by the inability of standard scRNA-seq protocols to capture miRNAs. We introduce a novel tool, miRSCAPE, to infer miRNA expression in a sample from its RNA-seq profile. We establish miRSCAPE's accuracy in 10 tumor and normal cohorts demonstrating its superiority over alternatives. miRSCAPE accurately infers cell type-specific miRNA activities (predicted versus observed fold-difference correlation ∼0.81) in two independent scRNA-seq datasets. We apply miRSCAPE to infer miRNA activities in scRNA clusters in pancreatic and lung adenocarcinomas, as well as in 56 cell types in the human cell landscape (HCL). In pancreatic and breast cancer scRNA-seq data, miRSCAPE recapitulates miRNAs associated with stemness and epithelial-mesenchymal transition (EMT) cell states, respectively. Overall, miRSCAPE recapitulates and refines miRNA biology at cellular resolution. miRSCAPE is freely available and is easily applicable to scRNA-seq data to infer miRNA activities at cellular resolution.

3.
Front Immunol ; 13: 918817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844595

RESUMEN

Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially expressed genes, which do not necessarily reveal the genes mediating the transcriptomic changes. In contrast, exploiting curated biological network, our PathExt tool identifies central genes from the differentially active paths mediating global transcriptomic response. Here we apply PathExt to multiple cell line infection models of SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast, PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently central genes are associated with COVID-19 severity. Importantly, relative to differential genes, PathExt-identified genes show greater concordance with several benchmark anti-COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2, ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such as Bemcentinib, Phthalocyanine, and Conivaptan.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/genética , Línea Celular , Humanos , Leucocitos Mononucleares , Transcriptoma
4.
Res Sq ; 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35434729

RESUMEN

Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially expressed genes, which do not necessarily reveal the genes mediating the transcriptomic changes. In contrast, exploiting curated biological network, our PathExt tool identifies central genes from the differentially active paths mediating global transcriptomic response. Here we apply PathExt to multiple cell line infection models of SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast, PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently central genes are associated with COVID-19 severity. Importantly, relative to differential genes, PathExt-identified genes show greater concordance with several benchmark anti-COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2, ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such as Bemcentinib, Phthalocyanine, and Conivaptan.

5.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1760-1771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33382660

RESUMEN

Although miRNAs can cause widespread changes in expression programs, single miRNAs typically induce mild repression on their targets. Cooperativity among miRNAs is reported as one strategy to overcome this constraint. Expanding the catalog of synergistic miRNAs is critical for understanding gene regulation and for developing miRNA-based therapeutics. In this study, we develop miRCoop to identify synergistic miRNA pairs that have weak or no repression on the target mRNA individually, but when act together, induce strong repression. miRCoop uses kernel-based statistical interaction tests, together with miRNA and mRNA target information. We apply our approach to patient data of two different cancer types. In kidney cancer, we identify 66 putative triplets. For 64 of these triplets, there is at least one common transcription factor that potentially regulates all participating RNAs of the triplet, supporting a functional association among them. Furthermore, we find that identified triplets are enriched for certain biological processes that are relevant to kidney cancer. Some of the synergistic miRNAs are very closely encoded in the genome, hinting a functional association among them. In applying the method on tumor data with the primary liver site, we find 3105 potential triplet interactions. We believe miRCoop can aid our understanding of the complex regulatory interactions in different health and disease states of the cell and can help in designing miRNA-based therapies. Matlab code for the methodology is provided in https://github.com/guldenolgun/miRCoop.


Asunto(s)
Neoplasias Renales , MicroARNs , Programas Informáticos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Renales/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Factores de Transcripción
6.
BMC Bioinformatics ; 22(1): 393, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348639
7.
BMC Bioinformatics ; 22(1): 294, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078267

RESUMEN

BACKGROUND: While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint at a functional association. RESULTS: We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast. CONCLUSIONS: NoRCE is a platform-independent, user-friendly, comprehensive R package that can be used to gain insight into the functional importance of a list of ncRNAs of any type. The tool offers flexibility to conduct the users' preferred set of analyses by designing their own pipeline of analysis. NoRCE is available in Bioconductor and https://github.com/guldenolgun/NoRCE .


Asunto(s)
MicroARNs , Pez Cebra , Animales , Genoma , Ratones , ARN no Traducido/genética , Ratas , Pez Cebra/genética
8.
Hum Mutat ; 41(8): e7-e45, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32579787

RESUMEN

The last decade has proven that amyotrophic lateral sclerosis (ALS) is clinically and genetically heterogeneous, and that the genetic component in sporadic cases might be stronger than expected. This study investigates 1,200 patients to revisit ALS in the ethnically heterogeneous yet inbred Turkish population. Familial ALS (fALS) accounts for 20% of our cases. The rates of consanguinity are 30% in fALS and 23% in sporadic ALS (sALS). Major ALS genes explained the disease cause in only 35% of fALS, as compared with ~70% in Europe and North America. Whole exome sequencing resulted in a discovery rate of 42% (53/127). Whole genome analyses in 623 sALS cases and 142 population controls, sequenced within Project MinE, revealed well-established fALS gene variants, solidifying the concept of incomplete penetrance in ALS. Genome-wide association studies (GWAS) with whole genome sequencing data did not indicate a new risk locus. Coupling GWAS with a coexpression network of disease-associated candidates, points to a significant enrichment for cell cycle- and division-related genes. Within this network, literature text-mining highlights DECR1, ATL1, HDAC2, GEMIN4, and HNRNPA3 as important genes. Finally, information on ALS-related gene variants in the Turkish cohort sequenced within Project MinE was compiled in the GeNDAL variant browser (www.gendal.org).


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Internet , Fenotipo , Turquía , Secuenciación Completa del Genoma
9.
BMC Genomics ; 19(1): 650, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180792

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) can indirectly regulate mRNAs expression levels by sequestering microRNAs (miRNAs), and act as competing endogenous RNAs (ceRNAs) or as sponges. Previous studies identified lncRNA-mediated sponge interactions in various cancers including the breast cancer. However, breast cancer subtypes are quite distinct in terms of their molecular profiles; therefore, ceRNAs are expected to be subtype-specific as well. RESULTS: To find lncRNA-mediated ceRNA interactions in breast cancer subtypes, we develop an integrative approach. We conduct partial correlation analysis and kernel independence tests on patient gene expression profiles and further refine the candidate interactions with miRNA target information. We find that although there are sponges common to multiple subtypes, there are also distinct subtype-specific interactions. Functional enrichment of mRNAs that participate in these interactions highlights distinct biological processes for different subtypes. Interestingly, some of the ceRNAs also reside in close proximity in the genome; for example, those involving HOX genes, HOTAIR, miR-196a-1 and miR-196a-2. We also discover subtype-specific sponge interactions with high prognostic potential. We found that patients differ significantly in their survival distributions if they are group based on the expression patterns of specific ceRNA interactions. However, it is not the case if the expression of individual RNAs participating in ceRNA is used. CONCLUSION: These results can help shed light on subtype-specific mechanisms of breast cancer, and the methodology developed herein can help uncover sponges in other diseases.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Basocelular/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Basocelular/clasificación , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patología , Biología Computacional , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Tasa de Supervivencia
10.
IEEE J Biomed Health Inform ; 18(4): 1390-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24043411

RESUMEN

This paper presents a new approach for the effective representation and classification of images of histopathological colon tissues stained with hematoxylin and eosin. In this approach, we propose to decompose a tissue image into its histological components and introduce a set of new texture descriptors, which we call local object patterns, on these components to model their composition within a tissue. We define these descriptors using the idea of local binary patterns, which quantify a pixel by constructing a binary string based on relative intensities of its neighbors. However, as opposed to pixel-level local binary patterns, we define our local object pattern descriptors at the component level to quantify a component. To this end, we specify neighborhoods with different locality ranges and encode spatial arrangements of the components within the specified local neighborhoods by generating strings. We then extract our texture descriptors from these strings to characterize histological components and construct the bag-of-words representation of an image from the characterized components. Working on microscopic images of colon tissues, our experiments reveal that the use of these component-level texture descriptors results in higher classification accuracies than the previous textural approaches.


Asunto(s)
Colon/citología , Colon/patología , Histocitoquímica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Neoplasias del Colon/patología , Eosina Amarillenta-(YS) , Hematoxilina , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA