Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(12): e2300294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821361

RESUMEN

Natural products belonging to different chemical classes have been established as a promising source of novel anticancer drugs. Several low-molecular-weight compounds from the classes of monoterpenes, phenylpropanoids, and flavonoids were shown to possess anticancer activities in previous studies. In this work, over 20 semisynthetic derivatives of molecules belonging to these classes, namely thymol, eugenol, and 6-hydroxyflavanone were synthesized and tested for their cytotoxicity against two human cancer cell lines, namely AGS cells (gastric adenocarcinoma) and A549 cells (human lung carcinoma). An initial screening based on viability assessment was performed to identify the most cytotoxic compounds at 100 µM. The results evidenced that two 6-hydroxyflavanone derivatives were the most cytotoxic among the compounds tested, being selected for further studies. These derivatives displayed enhanced toxicity when compared with their natural counterparts. Moreover, the lactate dehydrogenase (LDH) assay showed that the loss of cell viability was not accompanied by a loss of membrane integrity, thus ruling out a necrotic process. Morphological studies with AGS cells demonstrated chromatin condensation compatible with apoptosis, confirmed by the activation of caspase 3/7. Furthermore, a viability assay on a noncancer human embryonic lung fibroblast cell line (MRC-5) confirmed that these two derivatives possess selective anticancer activity.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Línea Celular Tumoral , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Células A549 , Neoplasias Pulmonares/patología , Apoptosis , Proliferación Celular
2.
Molecules ; 25(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322297

RESUMEN

The potential of plant extracts as bioinsecticides has been described as a promising field of agricultural development. In this work, the extracts of Punica granatum (pomegranate), Phytolacca americana (American pokeweed), Glandora prostrata (shrubby gromwell), Ulex europaeus (gorce), Tagetes patula (French marigold), Camellia japonica red (camellia), Ruta graveolens (rue or herb-of-grace) were obtained, purified, and their activity against Spodoptera frugiperda (Sf9) insect cells was investigated. From the pool of over twenty extracts obtained, comprising different polarities and vegetable materials, less polar samples were shown to be more toxic towards the insect cell line Sf9. Among these, a dichloromethane extract of R. graveolens was capable of causing a loss of viability of over 50%, exceeding the effect of the commercial insecticide chlorpyrifos. This extract elicited chromatin condensation and the fragmentation in treated cells. Nanoencapsulation assays of the cytotoxic plant extracts in soybean liposomes and chitosan nanostructures were carried out. The nanosystems exhibited sizes lower or around 200 nm, low polydispersity, and generally high encapsulation efficiencies. Release assays showed that chitosan nanoemulsions provide a fast and total extract release, while liposome-based systems are suitable for a more delayed release. These results represent a proof-of-concept for the future development of bioinsecticide nanoformulations based on the cytotoxic plant extracts.


Asunto(s)
Agentes de Control Biológico/química , Plaguicidas/química , Extractos Vegetales/química , Hojas de la Planta/química , Animales , Camellia , Quitosano/química , Fabaceae , Insectos , Insecticidas/análisis , Liposomas/química , Lithospermum , Nanoestructuras , Phytolacca americana , Granada (Fruta) , Ruta , Solventes , Glycine max/efectos de los fármacos , Tagetes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...