Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 345: 118748, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37666135

RESUMEN

Area-based targets, such as percentages of regions protected, are popular metrics of success in the protection of nature. While easily quantified, these targets can be uninformative about the effectiveness of conservation interventions and should be complemented by program impact evaluations. However, most impact evaluations have examined the effect of protected areas on deforestation. Studies that have extended these evaluations to more dynamic systems or different outcomes are less common, largely due to data availability. In these cases, simulations might prove to be a valuable tool for gaining an understanding of the potential range of program effect sizes. Here, we employ simulations of wetland drainage to estimate the impact of the United States Fish and Wildlife Service Small Wetlands Acquisition Program (SWAP) across a ten-year period in terms of wetland area, and breeding waterfowl and brood abundance in the Prairie Pothole Region of North Dakota, South Dakota, and Montana. Using our simulation results, we estimate a plausible range of program impact for the SWAP as an avoided loss of between 0.00% and 0.02% of the carrying capacity for broods and breeding waterfowl from 2008-2017. Despite the low programmatic impact that these results suggest, the perpetual nature of SWAP governance provides promising potential for a higher cumulative conservation impact in the long term if future wetland drainage occurs.


Asunto(s)
Animales Salvajes , Humedales , Animales , Simulación por Computador , Montana
2.
PLoS One ; 15(12): e0241042, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33275623

RESUMEN

We studied the habitat selection of pronghorn (Antilocapra americana) during seasonal migration; an important period in an animal's annual cycle associated with broad-scale movements. We further decompose our understanding of migration habitat itself as the product of both broad- and fine-scale behavioral decisions and take a multi-scale approach to assess pronghorn spring and fall migration across the transboundary Northern Sagebrush Steppe region. We used a hierarchical habitat selection framework to assess a suite of natural and anthropogenic features that have been shown to influence selection patterns of pronghorn at both broad (migratory neighborhood) and fine (migratory pathway) scales. We then combined single-scale predictions into a scale-integrated step selection function (ISSF) map to assess its effectiveness in predicting migration route habitat. During spring, pronghorn selected for native grasslands, areas of high forage productivity (NDVI), and avoided human activity (i.e., roads and oil and natural gas wells). During fall, pronghorn selected for native grasslands, larger streams and rivers, and avoided roads. We detected avoidance of paved roads, unpaved roads, and wells at broad spatial scales, but no response to these features at fine scales. In other words, migratory pronghorn responded more strongly to anthropogenic features when selecting a broad neighborhood through which to migrate than when selecting individual steps along their migratory pathway. Our results demonstrate that scales of migratory route selection are hierarchically nested within each other from broader (second-order) to finer scales (third-order). In addition, we found other variables during particular migratory periods (i.e., native grasslands in spring) were selected for across scales indicating their importance for pronghorn. The mapping of ungulate migration habitat is a topic of high conservation relevance. In some applications, corridors are mapped according to telemetry location data from a sample of animals, with the assumption that the sample adequately represents habitat for the entire population. Our use of multi-scale modelling to predict resource selection during migration shows promise and may offer another relevant alternative for use in future conservation planning and land management decisions where telemetry-based sampling is unavailable or incomplete.


Asunto(s)
Migración Animal , Rumiantes , Alberta , Animales , Conservación de los Recursos Naturales , Ecosistema , Femenino , Sistemas de Información Geográfica , Actividades Humanas , Humanos , Modelos Lineales , Montana , Rumiantes/fisiología , Saskatchewan , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA