Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Asthma ; : 1-10, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38747533

RESUMEN

BACKGROUND: Small airway dysfunction (SAD) is increasingly recognized as an important feature of pediatric asthma yet typically relies on spirometry-derived FEF25-75 to detect its presence. Multiple breath washout (MBW) and oscillometry potentially offer improved sensitivity for SAD detection, but their utility in comparison to FEF25-75, and correlations with clinical outcomes remains unclear for school-age asthma. We investigated SAD occurrence using these techniques, between-test correlation and links to clinical outcomes in 57 asthmatic children aged 8-18 years. METHODS: MBW and spirometry abnormality were defined as z-scores above/below ± 1.96, generating MBW reference equations from contemporaneous controls (n = 69). Abnormal oscillometry was defined as > 97.5th percentile, also from contemporaneous controls (n = 146). Individuals with abnormal FEF25-75, MBW, or oscillometry were considered to have SAD. RESULTS: Using these limits of normal, SAD was present on oscillometry in 63% (resistance at 5-20 Hz; R5-R20; >97.5th percentile), on MBW in 54% (Scond; z-scores> +1.96) and in spirometry FEF25-75 in 44% of participants (z-scores< -1.96). SAD, defined by oscillometry and/or MBW abnormality, occurred in 77%. Among those with abnormal R5-R20, Scond was abnormal in 71%. Correlations indicated both R5-R20 and Scond were linked to asthma medication burden, baseline FEV1 and reversibility. Additionally, Scond correlated with FENO and magnitude of bronchial hyper-responsiveness. SAD, detected by oscillometry and/or MBW, occurred in almost 80% of school-aged asthmatic children, surpassing FEF25-75 detection rates. CONCLUSIONS: Discordant oscillometry and MBW abnormality suggests they reflect different aspects of SAD, serving as complementary tools. Key asthma clinical features, like reversibility, had stronger correlation with MBW-derived Scond than oscillometry-derived R5-R20.

2.
Front Med (Lausanne) ; 11: 1251500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500955

RESUMEN

Background: Sulfur mustard (SM) exposure causes acute and chronic respiratory diseases. The extent of small airway dysfunction (SAD) in individuals exposed to SM is unclear. This study evaluated and compared SAD in SM-exposed and SM-unexposed participants using noninvasive lung function tests assessing small airway function. Methods: This retrospective cohort study involved SM-exposed (n = 15, mean age: 53 ± 8 years) and SM-unexposed (n = 15, mean age: 53 ± 7 years) Kurdish-Swedish individuals in Sweden. Small airway resistance and reactance were assessed using impulse oscillometry (IOS). Nitrogen (N2) multiple breath washout (MBW) was employed to assess lung ventilation heterogeneity. The gas-exchanging capacity of the lungs was assessed using the diffusing capacity of the lungs for the carbon monoxide (DLCO) test. Lung function outcomes were reported as absolute values and z-scores. Group comparisons were performed using the Mann-Whitney U test. Results: No statistically significant differences in age, height, or body mass index were observed between the two groups. IOS showed significantly increased small airway resistance, while N2MBW exhibited significantly increased global and acinar ventilation heterogeneity in SM-exposed individuals compared to that in unexposed individuals. SAD was identified in 14 of 15 SM-exposed individuals, defined as at least one abnormal IOS difference between resistance at 5 and 20 Hz (R5-R20) and/or area of reactance (AX) or N2MBW lung's acinar zone (Sacin), and DLCO adjusted to the alveolar volume (DLCO/VA) outcome. Of these 14 individuals, only 5 demonstrated concordant findings across the IOS and N2MBW tests. Conclusion: Exposure to SM was positively associated with long-term impairment of respiratory tract function in the small airways in the majority of the previously SM-exposed individuals in the present study. Furthermore, both IOS and N2MBW should be employed to detect SAD in SM-exposed survivors as they provide complementary information. Identifying and characterizing the remaining pathology of the small airways in survivors of SM exposure is a first step toward improved treatment and follow-up.

3.
Physiol Rep ; 12(2): e15918, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38253977

RESUMEN

Lingering breathing difficulties are common after COVID-19. However, the underlying causes remains unclear, with spirometry often being normal. We hypothesized that small airway dysfunction (SAD) can partly explain these symptoms. We examined 48 individuals (32 women, 4 hospitalized in the acute phase) who experienced dyspnea and/or cough in the acute phase and/or aftermath of COVID-19, and 22 non-COVID-19 controls. Time since acute infection was, median (range), 65 (10-131) weeks. We assessed SAD using multiple breath washout (MBW) and impulse oscillometry (IOS) and included spirometry and diffusing-capacity test (DLCO). One-minute-sit-to-stand test estimated physical function, and breathing difficulties were defined as answering "yes" to the question "do you experience lingering breathing difficulties?" Spirometry, DLCO, and IOS were normal in almost all cases (spirometry: 90%, DLCO: 98%, IOS: 88%), while MBW identified ventilation inhomogeneity in 50%. Breathing difficulties (n = 21) was associated with increased MBW-derived Sacin . However, physical function did not correlate with SAD. Among individuals with breathing difficulties, 25% had reduced physical function, 25% had SAD, 35% had both, and 15% had normal lung function and physical function. Despite spirometry and DLCO being normal in almost all post-COVID-19 individuals, SAD was present in a high proportion and was associated with lingering breathing difficulties.


Asunto(s)
COVID-19 , Femenino , Humanos , Disnea , Respiración , Espirometría , Pulmón
4.
Front Public Health ; 11: 1292420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38054074

RESUMEN

Introduction: Additive manufacturing is a novel state-of-the art technology with significant economic and practical advantages, including the ability to produce complex structures on demand while reducing the need of stocking materials and products. Additive manufacturing is a technology that is here to stay; however, new technologies bring new challenges, not only technical but also from an occupational health and safety perspective. Herein, leading Swedish companies using metal additive manufacturing were studied with the aim of investigating occupational exposure and the utility of chosen exposure- and clinical markers as predictors of potential exposure-related health risks. Methods: Exposure levels were investigated by analysis of airborne dust and metals, alongside particle counting instruments measuring airborne particles in the range of 10 nm-10 µm to identify dusty work tasks. Health examinations were performed on a total of 48 additive manufacturing workers and 39 controls. All participants completed a questionnaire, underwent spirometry, and blood and urine sampling. A subset underwent further lung function tests. Results: Exposure to inhalable dust and metals were low, but particle counting instruments identified specific work tasks with high particle emissions. Examined health parameters were well within reference values on a group level. However, statistical analysis implied an impact on workers kidney function and possible airway inflammation. Conclusion: The methodology was successful for investigating exposure-related health risks in additive manufacturing. However, most participants have been working <5 years. Therefore, long-term studies are needed before we can conclusively accept or reject the observed effects on health.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Contaminantes Ocupacionales del Aire/análisis , Exposición Profesional/análisis , Polvo/análisis , Encuestas y Cuestionarios , Encuestas Epidemiológicas
5.
BMC Pulm Med ; 23(1): 423, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924084

RESUMEN

BACKGROUND: Surfactant phospholipid (PL) composition plays an important role in lung diseases. We compared the PL composition of non-invasively collected exhaled breath particles (PEx) with bronchoalveolar lavage (BAL) and induced sputum (ISP) at baseline and following endotoxin (LPS) challenges. METHODS: PEx and BAL were collected from ten healthy nonsmoking participants before and after segmental LPS challenge. Four weeks later, PEx and ISP were sampled in the week before and after a whole lung LPS inhalation challenge. PL composition was analysed using mass spectrometry. RESULTS: The overall PL composition of BAL, ISP and PEx was similar, with PC(32:0) and PC(34:1) representing the largest fractions in all three sample types (baseline PC(32:0) geometric mean mol%: 52.1, 56.9, and 51.7, PC(34:1) mol%: 11.7, 11.9 and 11.4, respectively). Despite this similarity, PEx PL composition was more closely related to BAL than to ISP. For most lipids comparable inter-individual differences in BAL, ISP, and PEx were found. PL composition of PEx was repeatable. The most pronounced increase following segmental LPS challenge was detected for SM(d34:1) in BAL (0.24 to 0.52 mol%) and following inhalation LPS challenge in ISP (0.45 to 0.68 mol%). An increase of SM(d34:1) following segmental LPS challenge was also detectable in PEx (0.099 to 0.103 mol%). The inhalation challenge did not change PL composition of PEx. CONCLUSION: Our data supports the peripheral origin of PEx. The lack of PL changes in PEx after inhalation challenge might to be due to the overall weaker response of inhaled LPS which primarily affects the larger airways. Compared with BAL, which always contains lining fluid from both peripheral lung and central airways, PEx analysis might add value as a selective and non-invasive method to investigate peripheral airway PL composition. TRIAL REGISTRATION: NCT03044327, first posted 07/02/2017.


Asunto(s)
Lipopolisacáridos , Surfactantes Pulmonares , Humanos , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar/química , Espiración/fisiología , Lipopolisacáridos/análisis , Pulmón/fisiología
6.
Respiration ; 102(8): 621-631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37423212

RESUMEN

BACKGROUND: Several studies have shown the importance of the complement and coagulation systems in the pathogenesis of asthma. OBJECTIVES: We explored whether we could detect differentially abundant complement and coagulation proteins in the samples obtained from the small airway lining fluid by collection of exhaled particles in patients with asthma and whether these proteins are associated with small airway dysfunction and asthma control. METHOD: Exhaled particles were obtained from 20 subjects with asthma and 10 healthy controls (HC) with the PExA method and analysed with the SOMAscan proteomics platform. Lung function was assessed by nitrogen multiple breath washout test and spirometry. RESULTS: 53 proteins associated with the complement and coagulation systems were included in the analysis. Nine of those proteins were differentially abundant in subjects with asthma as compared to HC, and C3 was significantly higher in inadequately controlled asthma as compared to well-controlled asthma. Several proteins were associated with physiological tests assessing small airways. CONCLUSIONS: The study highlights the role of the local activation of the complement and coagulation systems in the small airway lining fluid in asthma and their association with both asthma control and small airway dysfunction. The findings highlight the potential of complement factors as biomarkers to identify different sub-groups among patients with asthma that could potentially benefit from a therapeutic approach targeting the complement system.


Asunto(s)
Asma , Coagulación Sanguínea , Bronquiolos , Activación de Complemento , Alveolos Pulmonares , Asma/sangre , Asma/inmunología , Asma/fisiopatología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/fisiopatología , Bronquiolos/inmunología , Bronquiolos/fisiopatología
7.
Part Fibre Toxicol ; 20(1): 26, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430267

RESUMEN

BACKGROUND: There is insufficient knowledge about the systemic health effects of exposure to fine (PM2.5) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM2.5 µg/m3; polycyclic aromatic hydrocarbons ng/m3): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning. RESULTS: SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs. CONCLUSIONS: Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.


Asunto(s)
Asma , Humanos , Estudios Cruzados , Biomarcadores , Proteína C-Reactiva , Culinaria , Inflamación , Albúminas , Citocinas , Lípidos
8.
Environ Health ; 22(1): 50, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386634

RESUMEN

BACKGROUND: Air pollution is a large environmental health hazard whose exposure and health effects are unequally distributed among individuals. This is, at least in part, due to gene-environment interactions, but few studies exist. Thus, the current study aimed to explore genetic susceptibility to airway inflammation from short-term air pollution exposure through mechanisms of gene-environment interaction involving the SFTPA, GST and NOS genes. METHODS: Five thousand seven hundred two adults were included. The outcome measure was fraction of exhaled nitric oxide (FeNO), at 50 and 270 ml/s. Exposures were ozone (O3), particulate matter < 10 µm (PM10), and nitrogen dioxide (NO2) 3, 24, or 120-h prior to FeNO measurement. In the SFTPA, GST and NOS genes, 24 single nucleotide polymorphisms (SNPs) were analyzed for interaction effects. The data were analyzed using quantile regression in both single-and multipollutant models. RESULTS: Significant interactions between SNPs and air pollution were found for six SNPs (p < 0.05): rs4253527 (SFTPA1) with O3 and NOx, rs2266637 (GSTT1) with NO2, rs4795051 (NOS2) with PM10, NO2 and NOx, rs4796017 (NOS2) with PM10, rs2248814 (NOS2) with PM10 and rs7830 (NOS3) with NO2. The marginal effects on FeNO for three of these SNPs were significant (per increase of 10 µg/m3):rs4253527 (SFTPA1) with O3 (ß: 0.155, 95%CI: 0.013-0.297), rs4795051 (NOS2) with PM10 (ß: 0.073, 95%CI: 0.00-0.147 (single pollutant), ß: 0.081, 95%CI: 0.004-0.159 (multipollutant)) and NO2 (ß: -0.084, 95%CI: -0.147; -0.020 (3 h), ß: -0.188, 95%CI: -0.359; -0.018 (120 h)) and rs4796017 (NOS2) with PM10 (ß: 0.396, 95%CI: 0.003-0.790). CONCLUSIONS: Increased inflammatory response from air pollution exposure was observed among subjects with polymorphisms in SFTPA1, GSTT1, and NOS genes, where O3 interacted with SFTPA1 and PM10 and NO2/NOx with the GSTT1 and NOS genes. This provides a basis for the further exploration of biological mechanisms as well as the identification of individuals susceptible to the effects of outdoor air pollution.


Asunto(s)
Contaminación del Aire , Predisposición Genética a la Enfermedad , Adulto , Humanos , Dióxido de Nitrógeno/efectos adversos , Contaminación del Aire/efectos adversos , Óxido Nítrico , Inflamación/inducido químicamente , Inflamación/genética , Polimorfismo de Nucleótido Simple
9.
Am J Respir Crit Care Med ; 208(4): 461-471, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339507

RESUMEN

Rationale: Postbronchodilator spirometry is used for the diagnosis of chronic obstructive pulmonary disease. However, prebronchodilator reference values are used for spirometry interpretation. Objectives: To compare the resulting prevalence rates of abnormal spirometry and study the consequences of using pre- or postbronchodilator reference values generated within SCAPIS (Swedish CArdioPulmonary bioImage Study) when interpreting postbronchodilator spirometry in a general population. Methods: SCAPIS reference values for postbronchodilator and prebronchodilator spirometry were based on 10,156 and 1,498 never-smoking, healthy participants, respectively. We studied the associations of abnormal spirometry, defined by using pre- or postbronchodilator reference values, with respiratory burden in the SCAPIS general population (28,851 individuals). Measurements and Main Results: Bronchodilation resulted in higher predicted medians and lower limits of normal (LLNs) for FEV1/FVC ratios. The prevalence of postbronchodilator FEV1/FVC ratio lower than the prebronchodilator LLN was 4.8%, and that of postbronchodilator FEV1/FVC lower than the postbronchodilator LLN was 9.9%, for the general population. An additional 5.1% were identified as having an abnormal postbronchodilator FEV1/FVC ratio, and this group had more respiratory symptoms, emphysema (13.5% vs. 4.1%; P < 0.001), and self-reported physician-diagnosed chronic obstructive pulmonary disease (2.8% vs. 0.5%, P < 0.001) than subjects with a postbronchodilator FEV1/FVC ratio greater than the LLN for both pre- and postbronchodilation. Conclusions: Pre- and postbronchodilator spirometry reference values differ with regard to FEV1/FVC ratio. Use of postbronchodilator reference values doubled the population prevalence of airflow obstruction; this was related to a higher respiratory burden. Using postbronchodilator reference values when interpreting postbronchodilator spirometry might enable the identification of individuals with mild disease and be clinically relevant.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Valores de Referencia , Volumen Espiratorio Forzado , Capacidad Vital , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Espirometría
10.
Front Public Health ; 11: 1148974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151597

RESUMEN

Additive manufacturing (AM), or 3D printing, is a growing industry involving a wide range of different techniques and materials. The potential toxicological effects of emissions produced in the process, involving both ultrafine particles and volatile organic compounds (VOCs), are unclear, and there are concerns regarding possible health implications among AM operators. The objective of this study was to screen the presence of respiratory health effects among people working with liquid, powdered, or filament plastic materials in AM. Methods: In total, 18 subjects working with different additive manufacturing techniques and production of filament with polymer feedstock and 20 controls participated in the study. Study subjects filled out a questionnaire and underwent blood and urine sampling, spirometry, impulse oscillometry (IOS), exhaled NO test (FeNO), and collection of particles in exhaled air (PEx), and the exposure was assessed. Analysis of exhaled particles included lung surfactant components such as surfactant protein A (SP-A) and phosphatidylcholines. SP-A and albumin were determined using ELISA. Using reversed-phase liquid chromatography and targeted mass spectrometry, the relative abundance of 15 species of phosphatidylcholine (PC) was determined in exhaled particles. The results were evaluated by univariate and multivariate statistical analyses (principal component analysis). Results: Exposure and emission measurements in AM settings revealed a large variation in particle and VOC concentrations as well as the composition of VOCs, depending on the AM technique and feedstock. Levels of FeNO, IOS, and spirometry parameters were within clinical reference values for all AM operators. There was a difference in the relative abundance of saturated, notably dipalmitoylphosphatidylcholine (PC16:0_16:0), and unsaturated lung surfactant lipids in exhaled particles between controls and AM operators. Conclusion: There were no statistically significant differences between AM operators and controls for the different health examinations, which may be due to the low number of participants. However, the observed difference in the PC lipid profile in exhaled particles indicates a possible impact of the exposure and could be used as possible early biomarkers of adverse effects in the airways.


Asunto(s)
Espiración , Polímeros , Humanos , Material Particulado/análisis , Sistema Respiratorio/química , Tensoactivos
11.
Respir Res ; 24(1): 65, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859273

RESUMEN

BACKGROUND: Chronic cough is a common condition but disease mechanisms are not fully understood. Our aim was to study respiratory biomarkers from the small airways in individuals with non-productive cough. METHODS: A cohort of 107 participants answered detailed questionnaires, performed spirometry, exhaled NO measurement, impulse oscillometry, gave blood samples and particles in exhaled air (PEx) samples. Current smokers (N = 38) were excluded. A total of 14 participants reported non-productive cough (cases). A total of 55 participants reported no cough (control group). PEx samples, containing exhaled particles derived from small airways, were collected and analysed with the SOMAscan proteomics platform. RESULTS: Participants with non-productive cough had similar age, sex, BMI, and inflammation markers in blood tests, as participants without cough. The proteomics analysis found 75 proteins significantly altered among participants with chronic cough compared to controls, after adjusting for sex and investigator performing the PExA measurement (all with p-value < 0.05 and q-value ≤ 0.13, thereof 21 proteins with a q-value < 0.05). These proteins were mostly involved in immune and inflammatory responses, complement and coagulation system, but also tight junction proteins and proteins involved in neuroinflammatory responses. CONCLUSIONS: This exploratory study on proteomics of exhaled particles among individuals with chronic cough found alterations in relative abundance of 75 proteins. The proteins identified are implicated in both pathways known to be implicated in cough, but also potentially new pathways. Further studies are needed to explore the importance of these findings.


Asunto(s)
Tos , Espiración , Humanos , Adulto , Biomarcadores , Inflamación , Proteómica
12.
Health Qual Life Outcomes ; 20(1): 165, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539888

RESUMEN

BACKGROUND: The Iraqi state used chemical warfare agents (CWAs) like sulfur mustard (SM) in al-Anfal genocide in the present-day Kurdistan Region of Iraq. In addition to somatic injuries, exposure to CWAs causes biopsychosocial complications. We investigated the long-term impact of SM exposure on quality of life (QoL) and depression severity in Kurdish survivors resettled in Sweden. METHODS: This is a case-control study, where subjects exposed to SM (n = 18, mean age 51.3 years, 50% women) and sex- and age-matched nonexposed subjects (n = 30, mean age 48.7 years, 47% women) of Kurdish residents in Sweden. Data were collected through in-person interviews based on the RAND 36-item Short Form Health Survey to assess QoL and the Montgomery-Åsberg Depression Rating Scale-self assessment (MADRS-S) to investigate the presence and the gravity of depressive symptoms. RESULTS: The SM-exposed group had a significantly lower QoL than the nonexposed group (p < 0.001). Also, the overall mean MADRS-S scores among the SM-exposed group, corresponding to moderate depression, were higher than the scores of the nonexposed (22 points (p) vs. 9 p, p < .001). Overall, the participants within the exposed group reported worse mental than physical well-being 36p and 32p, respectively. Within the SM-exposed group, there was no gendered-related difference neither in terms of depression severity nor for QoL, but the groups were small. CONCLUSION: Individuals exposed to SM had worse QoL and a higher level of depressive severity compared with nonexposed individuals three decades after exposure, indicating the importance of increased clinician knowledge, guidelines, and an approach to assess and respond to the exposed groups' biopsychosocial needs. These findings indicate that those exposed to SM might need early identification of mental illnesses and more support to promote QoL.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Humanos , Femenino , Persona de Mediana Edad , Masculino , Gas Mostaza/efectos adversos , Salud Mental , Calidad de Vida , Suecia/epidemiología , Estudios de Casos y Controles , Sobrevivientes/psicología
13.
Environ Health ; 21(1): 63, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794604

RESUMEN

BACKGROUND: Evidence of the role of interactions between air pollution and pollen exposure in subjects with allergic asthma is limited and need further exploration to promote adequate preventive measures. The objective of this study was to assess effects of exposure to ambient air pollution and birch pollen on exacerbation of respiratory symptoms in subjects with asthma and allergy to birch. METHODS: Thirty-seven subjects from two Swedish cities (Gothenburg and Umeå) with large variation in exposure to both birch-pollen and air pollutants, participated in the study. All subjects had confirmed allergy to birch and self-reported physician-diagnosed asthma. The subjects recorded respiratory symptoms such as rhinitis or eye irritation, dry cough, dyspnoea, the use of any asthma or allergy medication and peak respiratory flow (PEF), daily for five consecutive weeks during two separate pollen seasons and a control season without pollen. Nitrogen oxides (NOx), ozone (O3), particulate matter (PM2.5), birch pollen counts, and meteorological data were obtained from an urban background monitoring stations in the study city centres. The data were analysed using linear mixed effects models. RESULTS: During pollen seasons all symptoms and medication use were higher, and PEF was reduced in the subjects. In regression analysis, exposure to pollen at lags 0 to 2 days, and lags 0 to 6 days was associated with increased ORs of symptoms and decreased RRs for PEF. Pollen and air pollution interacted in some cases; during low pollen exposure, there were no associations between air pollution and symptoms, but during high pollen exposure, O3 concentrations were associated with increased OR of rhinitis or eye irritation, and PM2.5 concentrations were associated with increased ORs of rhinitis or eye irritation, dyspnea and increased use of allergy medication. CONCLUSIONS: Pollen and air pollutants interacted to increase the effect of air pollution on respiratory symptoms in allergic asthma. Implementing the results from this study, advisories for individuals with allergic asthma could be improved, minimizing the morbidities associated with the condition.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Hipersensibilidad , Rinitis Alérgica Estacional , Rinitis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Asma/tratamiento farmacológico , Asma/epidemiología , Betula , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Polen/efectos adversos , Estaciones del Año , Suecia/epidemiología
15.
Clin Proteomics ; 19(1): 20, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668386

RESUMEN

BACKGROUND: There is a lack of early and precise biomarkers for personalized respiratory medicine. Breath contains an aerosol of droplet particles, which are formed from the epithelial lining fluid when the small airways close and re-open during inhalation succeeding a full expiration. These particles can be collected by impaction using the PExA® method (Particles in Exhaled Air), and are derived from an area of high clinical interest previously difficult to access, making them a potential source of biomarkers reflecting pathological processes in the small airways. RESEARCH QUESTION: Our aim was to investigate if PExA method is useful for discovery of biomarkers that reflect pathology of small airways. METHODS AND ANALYSIS: Ten healthy controls and 20 subjects with asthma, of whom 10 with small airway involvement as indicated by a high lung clearance index (LCI ≥ 2.9 z-score), were examined in a cross-sectional design, using the PExA instrument. The samples were analysed with the SOMAscan proteomics platform (SomaLogic Inc.). RESULTS: Two hundred-seven proteins were detected in up to 80% of the samples. Nine proteins showed differential abundance in subjects with asthma and high LCI as compared to healthy controls. Two of these were less abundant (ALDOA4, C4), and seven more abundant (FIGF, SERPINA1, CD93, CCL18, F10, IgM, IL1RAP). sRAGE levels were lower in ex-smokers (n = 14) than in never smokers (n = 16). Gene Ontology (GO) annotation database analyses revealed that the PEx proteome is enriched in extracellular proteins associated with extracellular exosome-vesicles and innate immunity. CONCLUSION: The applied analytical method was reproducible and allowed identification of pathologically interesting proteins in PEx samples from asthmatic subjects with high LCI. The results suggest that PEx based proteomics is a novel and promising approach to study respiratory diseases with small airway involvement.

16.
Respir Physiol Neurobiol ; 301: 103899, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35364290

RESUMEN

Respiratory tract lining fluid (RTLF) is an important component of the lung epithelial barrier. Pathological changes in RTLF may cause increased permeability of the epithelial barrier, but changes within RTLF are difficult to assess non-invasively. The aim of this study was to explore if the use of the non-invasive measurement technique, Particles in Exhaled Air (PEx) and blood test were useful in assessing epithelial barrier, and if cigarette smoking affects the relationship. In a general population subcohort from the European Community Respiratory Health Survey III in Iceland (n = 112), we collected RTLF droplets using the PEx technique, in conjunction with blood samples and questionnaire data. We measured surfactant protein A (SP-A) in the collected plasma and PEx samples. Participants were defined as healthy if they did not currently have asthma, were non-smokers and had forced expiratory volume in one second ≥ 80% of predicted value. Of the 112 participants, 97 were healthy and 15 were current smokers. There was no correlation between plasma and PEx SP-A levels. However, the ratio of plasma to PEx SP-A was significantly higher in smokers compared to healthy subjects. The lack of correlation between PEx and plasma SP-A in healthy participants, indicates that SP-A in plasma does not diffuse freely over the lung epithelial barrier. However, the lung epithelial barrier may be injured by smoking, leading to diffusion of SP-A across the barrier into the bloodstream, causing an increased ratio of plasma to PEx SP-A.


Asunto(s)
Asma , Proteína A Asociada a Surfactante Pulmonar , Espiración , Volumen Espiratorio Forzado , Humanos , Pulmón/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo
17.
Sci Rep ; 12(1): 5620, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379863

RESUMEN

Particles in exhaled air (PEx) are generated when collapsed small airways reopen during breathing. PEx can be noninvasively collected by particle impaction, allowing the analysis of undiluted epithelial lining fluid (ELF). We used the endotoxin (LPS) challenge model to proof the concept that PEx can be used to monitor inflammatory changes in the lung. In this pilot study PEx were collected from ten healthy nonsmoking subjects using the PExA® instrument twice before and twice after a segmental LPS challenge (5, 21 h). Following a 4-week washout period, PEx were collected during the week before and 5 h after a whole lung LPS inhalation challenge. PEx biomarkers were compared to blood, bronchoalveolar lavage (BAL) following segmental challenge and induced sputum (ISP) following inhalation challenge. A clear LPS-induced inflammatory response was detectable in BAL fluid, ISP and blood. Albumin and surfactant-protein D were detectable in all PEx samples. While most baseline cytokines were close to or below the detection limit, the median (IQR) IL-6 and IL-8 concentrations in PEx increased significantly after segmental (0.04 (0.03; 0.06) fg/ng PEx; 0.10 (0.08; 0.17) fg/ng PEx) and inhalation LPS challenge (0.19 (0.15; 0.23) fg/ng PEx; 0.32 (0.23; 0.42) fg/ng PEx). Using a highly sensitive analysis platform, we were able to detect a cytokine response in PEx during the early phase of LPS-induced inflammation. This will broaden the spectrum of applications for this noninvasive method to monitor inflammatory processes in the lung, including its use in clinical trials for respiratory drug development.Trial registration: The study has been registered on 07.02.2017 at Clinicaltrials.gov (NCT03044327).


Asunto(s)
Citocinas , Endotoxinas , Voluntarios Sanos , Humanos , Pulmón , Proyectos Piloto
18.
Int Arch Occup Environ Health ; 95(6): 1255-1265, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35066624

RESUMEN

PURPOSE: Air monitoring has been the accepted exposure assessment of toxic metals from, e.g., welding, but a method characterizing the actual dose delivered to the lungs would be preferable. Sampling of particles in exhaled breath can be used for the biomonitoring of both endogenous biomarkers and markers of exposure. We have explored a new method for the sampling of metals in exhaled breath from the small airways in a study on welders. METHODS: Our method for particle sampling, Particles in Exhaled Air (PExA®), is based on particle counting and inertial impaction. We applied it on 19 stainless steel welders before and after a workday. In parallel, air monitoring of chromium, manganese and nickel was performed as well as blood sampling after work. RESULTS: Despite substantial exposure to welding fumes, we were unable to show any significant change in the metal content of exhaled particles after, compared with before, exposure. However, the significance might be obscured by a substantial analytical background noise, due to metal background in the sampling media and possible contamination during sampling, as an increase in the median metal contents were indicated. CONCLUSIONS: If efforts to reduce background and contamination are successful, the PExA® method could be an important tool in the investigations of metals in exhaled breath, as the method collects particles from the small airways in contrast to other methods. In this paper, we discuss the discrepancy between our findings and results from studies, using the exhaled breath condensate (EBC) methodology.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Soldadura , Contaminantes Ocupacionales del Aire/análisis , Biomarcadores/análisis , Espiración , Humanos , Obreros Metalúrgicos , Metales/análisis , Exposición Profesional/análisis , Soldadura/métodos
19.
Influenza Other Respir Viruses ; 16(3): 402-410, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35037404

RESUMEN

BACKGROUND: The knowledge on the concentration of viral particles in exhaled breath is limited. The aim of this study was to explore if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be detected in aerosol from subjects with the coronavirus disease 2019 (COVID-19) during various types of breathing and coughing and how infection with SARS-CoV-2 may influence the number and size of exhaled aerosol particles. METHODS: We counted and collected endogenous particles in exhaled breath in subjects with COVID-19 disease by two different impaction-based methods, during 20 normal breaths, 10 airway opening breaths, and three coughs, respectively. Breath samples were analyzed with reverse transcription real-time polymerase chain reaction (RT-PCR). RESULTS: Detection of RNA in aerosol was possible in 10 out of 25 subjects. Presence of virus RNA in aerosol was mainly found in cough samples (n = 8), but also in airway opening breaths (n = 3) and in normal breaths (n = 4), with no overlap between the methods. No association between viral load in aerosol and number exhaled particles <5 µm was found. Subjects with COVID-19 exhaled less particles than healthy controls during normal breathing and airway opening breaths (all P < 0.05), but not during cough. CONCLUSION: SARS-CoV-2 RNA can be detected in exhaled aerosol, sampled during a limited number of breathing and coughing procedures. Detection in aerosol seemed independent of viral load in the upper airway swab as well as of the exhaled number of particles. The infectious potential of the amount of virus detected in aerosol needs to be further explored.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aerosoles , COVID-19/diagnóstico , Tos , Humanos , ARN Viral/genética
20.
Clin Exp Allergy ; 52(2): 297-311, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34536262

RESUMEN

BACKGROUND: Fractional exhaled nitric oxide (FeNO) is a well-known marker of type-2 inflammation. FeNO is elevated in asthma and allergic rhinitis, with IgE sensitization as a major determinant. OBJECTIVE: We aimed to see whether there was an independent association between upper airway inflammatory disorders (UAID) and FeNO, after adjustment for asthma and sensitization, in a multi-centre population-based study. METHODS: A total of 741 subjects with current asthma and 4155 non-asthmatic subjects participating in the second follow-up of the European Community Respiratory Health Survey (ECRHS III) underwent FeNO measurements. Sensitization status was based on measurement of IgE against airborne allergens; information on asthma, UAID and medication was collected through interview-led questionnaires. Independent associations between UAID and FeNO were assessed in adjusted multivariate regression models and test for interaction with perennial sensitization and asthma on the relation between UAID and FeNO were made. RESULTS: UAID were associated with higher FeNO after adjusting for perennial sensitization, asthma and other confounders: with 4.4 (0.9-7.9) % higher FeNO in relation to current rhinitis and 4.8 (0.7-9.2) % higher FeNO in relation to rhinoconjunctivitis. A significant interaction with perennial sensitization was found in the relationship between current rhinitis and FeNO (p = .03) and between rhinoconjunctivitis and FeNO (p = .03). After stratification by asthma and perennial sensitization, the association between current rhinitis and FeNO remained in non-asthmatic subjects with perennial sensitization, with 12.1 (0.2-25.5) % higher FeNO in subjects with current rhinitis than in those without. CONCLUSIONS & CLINICAL RELEVANCE: Current rhinitis and rhinoconjunctivitis was associated with higher FeNO, with an interaction with perennial sensitization. This further highlights the concept of united airway disease, with correlations between symptoms and inflammation in the upper and lower airways and that sensitization needs to be accounted for in the relation between FeNO and rhinitis.


Asunto(s)
Asma , Óxido Nítrico , Alérgenos , Asma/complicaciones , Asma/diagnóstico , Asma/epidemiología , Pruebas Respiratorias , Estudios Transversales , Espiración , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...