Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 1032397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439104

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has emerged recently as a standard of care treatment for patients with relapsed or refractory acute lymphoblastic leukemia (ALL) and several subtypes of B-cell non-Hodgkin lymphoma (NHL). However, its use remains limited to highly specialized centers, given the complexity of its administration and its associated toxicities. We previously reported our experience in using a novel Sleeping Beauty (SB) CD19-specific CAR T-cell therapy in the peri-transplant setting, where it exhibited an excellent safety profile with encouraging survival outcomes. We have since modified the SB CD19 CAR construct to improve its efficacy and shorten its manufacturing time. We report here the phase 1 clinical trial safety results. Fourteen heavily treated patients with relapsed/refractory ALL and NHL were infused. Overall, no serious adverse events were directly attributed to the study treatment. Three patients developed grades 1-2 cytokine release syndrome and none of the study patients experienced neurotoxicity. All dose levels were well tolerated and no dose-limiting toxicities were reported. For efficacy, 3 of 8 (38%) patients with ALL achieved CR/CRi (complete remission with incomplete count recovery) and 1 (13%) patient had sustained molecular disease positivity. Of the 4 patients with DLBCL, 2 (50%) achieved CR. The SB-based CAR constructs allow manufacturing of targeted CAR T-cell therapies that are safe, cost-effective and with encouraging antitumor activity.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Linfocitos B , Neoplasias Hematológicas/etiología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Neoplasias/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/genética
2.
PLoS One ; 15(2): e0228112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32040512

RESUMEN

Neoantigens can be predicted and in some cases identified using the data obtained from the whole exome sequencing and transcriptome sequencing of tumor cells. These sequencing data can be coupled with single-cell RNA sequencing for the direct interrogation of the transcriptome, surfaceome, and pairing of αß T-cell receptors (TCRαß) from hundreds of single T cells. Using these 2 large datasets, we established a platform for identifying antigens recognized by TCRαßs obtained from single T cells. Our approach is based on the rapid expression of cloned TCRαß genes as Sleeping Beauty transposons and the determination of the introduced TCRαßs' antigen specificity and avidity using a reporter cell line. The platform enables the very rapid identification of tumor-reactive TCRs for the bioengineering of T cells with redirected specificity.


Asunto(s)
Ingeniería Celular/métodos , Clonación Molecular/métodos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Expresión Génica , Biblioteca de Genes , Genes MHC Clase I/genética , Genes MHC Clase II/genética , Células HEK293 , Humanos , Cinética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
3.
Oncogene ; 37(27): 3686-3697, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29622795

RESUMEN

The CD56 antigen (NCAM-1) is highly expressed on several malignancies with neuronal or neuroendocrine differentiation, including small-cell lung cancer and neuroblastoma, tumor types for which new therapeutic options are needed. We hypothesized that CD56-specific chimeric antigen receptor (CAR) T cells could target and eliminate CD56-positive malignancies. Sleeping Beauty transposon-generated CD56R-CAR T cells exhibited αßT-cell receptors, released antitumor cytokines upon co-culture with CD56+ tumor targets, demonstrated a lack of fratricide, and expression of cytolytic function in the presence of CD56+ stimulation. The CD56R-CAR+ T cells are capable of killing CD56+ neuroblastoma, glioma, and SCLC tumor cells in in vitro co-cultures and when tested against CD56+ human xenograft neuroblastoma models and SCLC models, CD56R-CAR+ T cells were able to inhibit tumor growth in vivo. These results indicate that CD56-CARs merit further investigation as a potential treatment for CD56+ malignancies.


Asunto(s)
Antígeno CD56/metabolismo , Glioma/terapia , Neoplasias Pulmonares/terapia , Neuroblastoma/terapia , Receptores Quiméricos de Antígenos/metabolismo , Carcinoma Pulmonar de Células Pequeñas/terapia , Linfocitos T/inmunología , Linfocitos T/trasplante , Animales , Antígeno CD56/genética , Línea Celular Tumoral , Glioma/patología , Humanos , Neoplasias Pulmonares/patología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Neuroblastoma/patología , Carcinoma Pulmonar de Células Pequeñas/patología , Transposasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Proc Natl Acad Sci U S A ; 113(48): E7788-E7797, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849617

RESUMEN

Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.


Asunto(s)
Interleucina-15/metabolismo , Neoplasias Experimentales/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/fisiología , Animales , Antígenos CD19/metabolismo , Humanos , Inmunoterapia Adoptiva , Activación de Linfocitos , Ratones , Células Precursoras de Linfocitos T/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
5.
J Clin Invest ; 126(9): 3363-76, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27482888

RESUMEN

BACKGROUND: T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS: T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS: SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS: CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION: Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING: National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.


Asunto(s)
Antígenos CD19/metabolismo , Elementos Transponibles de ADN , Linfoma no Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfocitos T/citología , Adulto , Células Presentadoras de Antígenos/inmunología , Citocinas/metabolismo , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Plásmidos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Trasplante Homólogo , Resultado del Tratamiento , Adulto Joven
6.
PLoS One ; 11(8): e0159477, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27548616

RESUMEN

Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.


Asunto(s)
Ingeniería Genética/métodos , Inmunoterapia Adoptiva/métodos , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/trasplante , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Antígenos CD28/genética , Antígenos CD28/inmunología , Caspasa 9/genética , Caspasa 9/inmunología , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Expresión Génica , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/patología , Humanos , Subunidad alfa del Receptor de Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Plásmidos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Recombinantes de Fusión/genética , Anticuerpos de Dominio Único/genética , Linfocitos T/citología , Linfocitos T/inmunología , Transfección , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
7.
Mol Imaging Biol ; 18(6): 838-848, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27246312

RESUMEN

PURPOSE: We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells. PROCEDURES: We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19+ artificial antigen-presenting cells. RESULTS: After 4 weeks, 90 % of cultured cells exhibited specific killing of CD19+ targets in vitro, could be ablated by ganciclovir, and were detected in vivo by bioluminescent imaging and PET following injection of 2'-deoxy-2'-[18F]fluoro-5-ethyl-1-ß-D-arabinofuranosyl-uracil ([18F]FEAU). CONCLUSION: This is the first report demonstrating the use of SB transposition to generate T cells which may be detected using PET laying the foundation for imaging the distribution and trafficking of T cells in patients treated for B cell malignancies.


Asunto(s)
Herpesvirus Humano 1/enzimología , Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Timidina Quinasa/metabolismo , Transposasas/metabolismo , Animales , Arabinofuranosil Uracilo/análogos & derivados , Arabinofuranosil Uracilo/química , Línea Celular , Ganciclovir/farmacología , Técnicas de Transferencia de Gen , Humanos , Luciferasas/metabolismo , Ratones , Radiofármacos/química , Transgenes , Xenopus
8.
Cancer Res ; 75(17): 3505-18, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26330164

RESUMEN

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity. T cells with low-affinity nimotuzumab-CAR selectively targeted cells overexpressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high-affinity cetuximab-CAR was not affected by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from nonmalignant cells.


Asunto(s)
Antígenos de Neoplasias/inmunología , Receptores ErbB/inmunología , Neoplasias/inmunología , Receptores de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Línea Celular Tumoral , Cetuximab/administración & dosificación , Epítopos/inmunología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia Adoptiva , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Receptores de Antígenos/uso terapéutico , Transducción de Señal , Linfocitos T/patología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
PLoS One ; 10(6): e0128151, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030772

RESUMEN

T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.


Asunto(s)
Elementos Transponibles de ADN/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón gamma/biosíntesis , Leucemia/inmunología , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Fenotipo , Linfocitos T/citología , Linfocitos T/inmunología , Transcripción Genética
10.
Clin Cancer Res ; 21(14): 3241-51, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25829402

RESUMEN

PURPOSE: The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. EXPERIMENTAL DESIGN: Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. RESULTS: We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. CONCLUSIONS: Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors.


Asunto(s)
Terapia Genética/métodos , Inmunoterapia Adoptiva/métodos , Melanoma/virología , Linfocitos T/trasplante , Proteínas Virales/inmunología , Animales , Ingeniería Genética/métodos , Humanos , Inmunohistoquímica , Melanoma/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Proc Natl Acad Sci U S A ; 111(29): 10660-5, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002471

RESUMEN

Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated "D-CAR") upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR(+) T cells for clinical trials. The D-CAR(+) T cells exhibited specificity for ß-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR(+) T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR(+) T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy.


Asunto(s)
Aspergilosis/inmunología , Aspergilosis/terapia , Bioingeniería/métodos , Carbohidratos/antagonistas & inhibidores , Infecciones Oportunistas/inmunología , Infecciones Oportunistas/terapia , Linfocitos T/inmunología , Animales , Antígenos CD19/metabolismo , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus/efectos de los fármacos , Aspergillus/fisiología , Dexametasona/farmacología , Humanos , Hifa/efectos de los fármacos , Hifa/fisiología , Inmunofenotipificación , Lectinas Tipo C/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones , Infecciones Oportunistas/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos
12.
Clin Cancer Res ; 20(22): 5708-19, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24833662

RESUMEN

PURPOSE: To activate and propagate populations of γδ T cells expressing polyclonal repertoire of γ and δ T-cell receptor (TCR) chains for adoptive immunotherapy of cancer, which has yet to be achieved. EXPERIMENTAL DESIGN: Clinical-grade artificial antigen-presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδ T cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing. RESULTS: γδ T-cell proliferation was dependent upon CD137L expression on aAPC and addition of exogenous IL2 and IL21. Propagated γδ T cells were polyclonal as they expressed TRDV1, TRDV2-2, TRDV3, TRDV5, TRDV7, and TRDV8 with TRGV2, TRGV3F, TRGV7, TRGV8, TRGV9*A1, TRGV10*A1, and TRGV11 TCR chains. IFNγ production by Vδ1, Vδ2, and Vδ1(neg)Vδ2(neg) subsets was inhibited by pan-TCRγδ antibody when added to cocultures of polyclonal γδ T cells and tumor cell lines. Polyclonal γδ T cells killed acute and chronic leukemia, colon, pancreatic, and ovarian cancer cell lines, but not healthy autologous or allogeneic normal B cells. Blocking antibodies demonstrated that polyclonal γδ T cells mediated tumor cell lysis through combination of DNAM1, NKG2D, and TCRγδ. The adoptive transfer of activated and propagated γδ T cells expressing polyclonal versus defined Vδ TCR chains imparted a hierarchy (polyclonal>Vδ1>Vδ1(neg)Vδ2(neg)>Vδ2) of survival of mice with ovarian cancer xenografts. CONCLUSIONS: Polyclonal γδ T cells can be activated and propagated with clinical-grade aAPCs and demonstrate broad antitumor activities, which will facilitate the implementation of γδ T-cell cancer immunotherapies in humans.


Asunto(s)
Activación de Linfocitos/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Traslado Adoptivo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Citocinas/biosíntesis , Citocinas/farmacología , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Interferón gamma/biosíntesis , Ratones , Ratones Transgénicos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/mortalidad , Neoplasias/terapia , ARN Mensajero , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Subgrupos de Linfocitos T/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Immunother ; 37(4): 204-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24714354

RESUMEN

T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to nonviral gene transfer in T cells uses ex vivo numeric expansion of CAR T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through coculture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed 1 ligand that could activate CAR T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated that CARL aAPC propagate CAR T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Using CARL enables 1 aAPC to numerically expand all CAR T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR T cells of any specificity.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Receptores de Antígenos de Linfocitos T/genética , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Células Presentadoras de Antígenos/metabolismo , Antígenos CD19/genética , Antígenos CD19/metabolismo , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva , Células K562 , Ratones , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
PLoS One ; 8(5): e64138, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23741305

RESUMEN

Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼10(10) T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Antígenos CD19/genética , Elementos Transponibles de ADN/genética , Leucemia de Células B/terapia , Linfocitos T/citología , Linfocitos T/metabolismo , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Antígenos CD19/inmunología , Antígenos CD28/genética , Antígenos CD28/inmunología , Complejo CD3/genética , Complejo CD3/inmunología , Proliferación Celular , Ensayos Clínicos como Asunto , Técnicas de Cocultivo , Elementos Transponibles de ADN/inmunología , Electroporación , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunoterapia Adoptiva/métodos , Interleucina-2/genética , Interleucina-2/inmunología , Células K562 , Leucemia de Células B/inmunología , Leucemia de Células B/patología , Activación de Linfocitos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Transposasas/genética , Transposasas/inmunología
15.
J Vis Exp ; (72): e50070, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23407473

RESUMEN

The potency of clinical-grade T cells can be improved by combining gene therapy with immunotherapy to engineer a biologic product with the potential for superior (i) recognition of tumor-associated antigens (TAAs), (ii) persistence after infusion, (iii) potential for migration to tumor sites, and (iv) ability to recycle effector functions within the tumor microenvironment. Most approaches to genetic manipulation of T cells engineered for human application have used retrovirus and lentivirus for the stable expression of CAR(1-3). This approach, although compliant with current good manufacturing practice (GMP), can be expensive as it relies on the manufacture and release of clinical-grade recombinant virus from a limited number of production facilities. The electro-transfer of nonviral plasmids is an appealing alternative to transduction since DNA species can be produced to clinical grade at approximately 1/10(th) the cost of recombinant GMP-grade virus. To improve the efficiency of integration we adapted Sleeping Beauty (SB) transposon and transposase for human application(4-8). Our SB system uses two DNA plasmids that consist of a transposon coding for a gene of interest (e.g. 2(nd) generation CD19-specific CAR transgene, designated CD19RCD28) and a transposase (e.g. SB11) which inserts the transgene into TA dinucleotide repeats(9-11). To generate clinically-sufficient numbers of genetically modified T cells we use K562-derived artificial antigen presenting cells (aAPC) (clone #4) modified to express a TAA (e.g. CD19) as well as the T cell costimulatory molecules CD86, CD137L, a membrane-bound version of interleukin (IL)-15 (peptide fused to modified IgG4 Fc region) and CD64 (Fc-γ receptor 1) for the loading of monoclonal antibodies (mAb)(12). In this report, we demonstrate the procedures that can be undertaken in compliance with cGMP to generate CD19-specific CAR(+) T cells suitable for human application. This was achieved by the synchronous electro-transfer of two DNA plasmids, a SB transposon (CD19RCD28) and a SB transposase (SB11) followed by retrieval of stable integrants by the every-7-day additions (stimulation cycle) of γ-irradiated aAPC (clone #4) in the presence of soluble recombinant human IL-2 and IL-21(13). Typically 4 cycles (28 days of continuous culture) are undertaken to generate clinically-appealing numbers of T cells that stably express the CAR. This methodology to manufacturing clinical-grade CD19-specific T cells can be applied to T cells derived from peripheral blood (PB) or umbilical cord blood (UCB). Furthermore, this approach can be harnessed to generate T cells to diverse tumor types by pairing the specificity of the introduced CAR with expression of the TAA, recognized by the CAR, on the aAPC.


Asunto(s)
Células Presentadoras de Antígenos/citología , Sangre Fetal/citología , Linfocitos T/fisiología , Transposasas/genética , Presentación de Antígeno , ADN Superhelicoidal/genética , Electroporación , Humanos , Células K562 , Plásmidos/genética , Receptores de Antígenos de Linfocitos T , Linfocitos T/inmunología , Transposasas/metabolismo
16.
J Immunother ; 36(2): 112-23, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23377665

RESUMEN

The Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electrotransfer of CD19-specific SB DNA plasmids in peripheral blood mononuclear cells and propagation on CD19 artificial antigen presenting cells was used to numerically expand CD3 T cells expressing CAR. By day 28 of coculture, >90% of expanded CD3 T cells expressed CAR. CAR T cells specifically killed CD19 target cells and consisted of subsets expressing biomarkers consistent with central memory, effector memory, and effector phenotypes. CAR T cells contracted numerically in the absence of the CD19 antigen, did not express SB11 transposase, and maintained a polyclonal TCR Vα and TCR Vß repertoire. Quantitative fluorescence in situ hybridization revealed that CAR T cells preserved the telomere length. Quantitative polymerase chain reaction and fluorescence in situ hybridization showed CAR transposon integrated on average once per T-cell genome. CAR T cells in peripheral blood can be detected by quantitative polymerase chain reaction at a sensitivity of 0.01%. These findings lay the groundwork as the basis of our first-in-human clinical trials of the nonviral SB system for the investigational treatment of CD19 B-cell malignancies (currently under 3 INDs: 14193, 14577, and 14739).


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva , Linfocitos T/trasplante , Transposasas/genética , Animales , Antígenos CD19/genética , Antígenos CD19/metabolismo , Complejo CD3/metabolismo , Línea Celular Tumoral , Células Cultivadas , Electroporación , Técnicas de Transferencia de Gen , Glioblastoma/inmunología , Glioblastoma/terapia , Humanos , Ratones , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/biosíntesis
17.
Mol Ther ; 21(3): 638-47, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23295945

RESUMEN

Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR(+)γδ T cells were expanded on CD19(+) artificial antigen-presenting cells (aAPC), which resulted in >10(9) CAR(+)γδ T cells from <10(6) total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR(+)γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19(+) tumor cell lines compared with CAR(neg)γδ T cells. CD19(+) leukemia xenografts in mice were reduced with CAR(+)γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos CD19/metabolismo , Línea Celular Tumoral , Electroporación , Humanos , Leucemia/terapia , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Transposasas/genética , Transposasas/metabolismo
18.
Cancer Res ; 71(10): 3516-27, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21558388

RESUMEN

Improving the therapeutic efficacy of T cells expressing a chimeric antigen receptor (CAR) represents an important goal in efforts to control B-cell malignancies. Recently an intrinsic strategy has been developed to modify the CAR itself to improve T-cell signaling. Here we report a second extrinsic approach based on altering the culture milieu to numerically expand CAR(+) T cells with a desired phenotype, for the addition of interleukin (IL)-21 to tissue culture improves CAR-dependent T-cell effector functions. We used electrotransfer of Sleeping Beauty system to introduce a CAR transposon and selectively propagate CAR(+) T cells on CD19(+) artificial antigen-presenting cells (aAPC). When IL-21 was present, there was preferential numeric expansion of CD19-specific T cells which lysed and produced IFN-γ in response to CD19. Populations of these numerically expanded CAR(+) T cells displayed an early memory surface phenotype characterized as CD62L(+)CD28(+) and a transcriptional profile of naïve T cells. In contrast, T cells propagated with only exogenous IL-2 tended to result in an overgrowth of CD19-specific CD4(+) T cells. Furthermore, adoptive transfer of CAR(+) T cells cultured with IL-21 exhibited improved control of CD19(+) B-cell malignancy in mice. To provide coordinated signaling to propagate CAR(+) T cells, we developed a novel mutein of IL-21 bound to the cell surface of aAPC that replaced the need for soluble IL-21. Our findings show that IL-21 can provide an extrinsic reprogramming signal to generate desired CAR(+) T cells for effective immunotherapy.


Asunto(s)
Antígenos CD19/biosíntesis , Linfocitos B/citología , Neoplasias Hematológicas/metabolismo , Inmunoterapia Adoptiva/métodos , Interleucina-12/metabolismo , Linfocitos T/inmunología , Animales , Antígenos CD19/metabolismo , Antígenos CD28/metabolismo , Linaje de la Célula , Técnicas de Cocultivo , Humanos , Interferón gamma/metabolismo , Interleucinas/metabolismo , Células K562 , Selectina L/metabolismo , Ratones , Ratones Endogámicos NOD , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Linfocitos T/metabolismo
19.
Biomed Microdevices ; 12(5): 855-63, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20574820

RESUMEN

It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 x 10(8) primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19+ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.


Asunto(s)
Electroporación/instrumentación , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/inmunología , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Antígenos CD19/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , ARN Mensajero/genética , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/citología
20.
Hum Gene Ther ; 21(4): 427-37, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19905893

RESUMEN

Nonviral integrating vectors can be used for expression of therapeutic genes. piggyBac (PB), a transposon/transposase system, has been used to efficiently generate induced pluripotent stems cells from somatic cells, without genetic alteration. In this paper, we apply PB transposition to express a chimeric antigen receptor (CAR) in primary human T cells. We demonstrate that T cells electroporated to introduce the PB transposon and transposase stably express CD19-specific CAR and when cultured on CD19(+) artificial antigen-presenting cells, numerically expand in a CAR-dependent manner, display a phenotype associated with both memory and effector T cell populations, and exhibit CD19-dependent killing of tumor targets. Integration of the PB transposon expressing CAR was not associated with genotoxicity, based on chromosome analysis. PB transposition for generating human T cells with redirected specificity to a desired target such as CD19 is a new genetic approach with therapeutic implications.


Asunto(s)
Antígenos CD19/metabolismo , Elementos Transponibles de ADN , Linfoma de Células B/terapia , Receptores de Antígenos/genética , Linfocitos T/inmunología , Transposasas , Células Presentadoras de Antígenos/inmunología , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Elementos Transponibles de ADN/genética , Elementos Transponibles de ADN/inmunología , Electroporación , Terapia Genética/métodos , Vectores Genéticos , Glioblastoma , Humanos , Células K562 , Plásmidos , Receptores de Antígenos/metabolismo , Linfocitos T/metabolismo , Transgenes , Transposasas/genética , Transposasas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...