Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535458

RESUMEN

The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function of the various nAChR subtypes. By studying how conotoxins interact with nAChRs, we can improve our understanding of these receptors, leading to new insights into neurological diseases associated with nAChRs. Here, we describe the discovery and characterization of a novel conotoxin from Conus ateralbus, αCtx-AtIA, which has an amino acid sequence homologous to the well-described αCtx-PeIA, but with a different selectivity profile towards nAChRs. We tested the synthetic αCtx-AtIA using the calcium imaging-based Constellation Pharmacology assay on mouse DRG neurons and found that αCtx-AtIA significantly inhibited ACh-induced calcium influx in the presence of an α7 positive allosteric modulator, PNU-120596 (PNU). However, αCtx-AtIA did not display any activity in the absence of PNU. These findings were further validated using two-electrode voltage clamp electrophysiology performed on oocytes overexpressing mouse α3ß4, α6/α3ß4 and α7 nAChRs subtypes. We observed that αCtx-AtIA displayed no or low potency in blocking α3ß4 and α6/α3ß4 receptors, respectively, but improved potency and selectivity to block α7 nAChRs when compared with αCtx-PeIA. Through the synthesis of two additional analogs of αCtx-AtIA and subsequent characterization using Constellation Pharmacology, we were able to identify residue Trp18 as a major contributor to the activity of the peptide.


Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Animales , Ratones , Calcio , Secuencia de Aminoácidos , Receptor Nicotínico de Acetilcolina alfa 7
2.
FASEB J ; 38(1): e23374, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161283

RESUMEN

This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and ß2 subunits (α7ß2-nAChR subtype). Basal forebrain cholinergic neurons express α7ß2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-ß associated with early Alzheimer's disease. Additional work indicates that α7ß2-nAChR are expressed across several further critically important cholinergic and GABAergic neuronal circuits within the central nervous system. Further studies, however, are significantly hindered by the inability of currently available ligands to distinguish heteromeric α7ß2-nAChR from the closely related and more widespread homomeric α7-only-nAChR subtype. Functional screening using two-electrode voltage-clamp electrophysiology identified a family of α7ß2-nAChR-selective analogs of α-conotoxin PnIC (α-CtxPnIC). A combined electrophysiology, functional kinetics, site-directed mutagenesis, and molecular dynamics approach was used to further characterize the α7ß2-nAChR selectivity and site of action of these α-CtxPnIC analogs. We determined that α7ß2-nAChR selectivity of α-CtxPnIC analogs arises from interactions at a site distinct from the orthosteric agonist-binding site shared between α7ß2- and α7-only-nAChR. As numerous previously identified α-Ctx ligands are competitive antagonists of orthosteric agonist-binding sites, this study profoundly expands the scope of use of α-Ctx ligands (which have already provided important nAChR research and translational breakthroughs). More immediately, analogs of α-CtxPnIC promise to enable, for the first time, both comprehensive mapping of the distribution of α7ß2-nAChR and detailed investigations of their physiological roles.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Colinérgicos , Sitios de Unión , Neuronas GABAérgicas/metabolismo , Antagonistas Nicotínicos/farmacología
3.
Cell Mol Life Sci ; 80(10): 287, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689602

RESUMEN

Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.


Asunto(s)
Conotoxinas , Caracol Conus , Toxinas Biológicas , Humanos , Animales , Conotoxinas/farmacología , Proteínas de la Membrana , Canales de Sodio/genética
4.
Front Mol Neurosci ; 16: 1176662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720554

RESUMEN

Peptide hormones and neuropeptides form a diverse class of bioactive secreted molecules that control essential processes in animals. Despite breakthroughs in peptide discovery, many signaling peptides remain undiscovered. Recently, we demonstrated the use of somatostatin-mimicking toxins from cone snails to identify the invertebrate ortholog of somatostatin. Here, we show that this toxin-based approach can be systematically applied to discover other unknown secretory peptides that are likely to have signaling function. Using large sequencing datasets, we searched for homologies between cone snail toxins and secreted proteins from the snails' prey. We identified and confirmed expression of five toxin families that share strong similarities with unknown secretory peptides from mollusks and annelids and in one case also from ecdysozoans. Based on several lines of evidence we propose that these peptides likely act as signaling peptides that serve important physiological functions. Indeed, we confirmed that one of the identified peptides belongs to the family of crustacean hyperglycemic hormone, a peptide not previously observed in Spiralia. We propose that this discovery pipeline can be broadly applied to other systems in which one organism has evolved molecules to manipulate the physiology of another.

5.
PLoS Biol ; 21(8): e3002217, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535677

RESUMEN

Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.


Asunto(s)
Conotoxinas , Ratones , Animales , Conotoxinas/farmacología , Conotoxinas/química , Canales de Calcio , Péptidos/química , Células Receptoras Sensoriales/metabolismo , Caracoles
6.
Front Pharmacol ; 14: 1156855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007002

RESUMEN

The voltage-gated sodium (NaV) channel subtype NaV1.7 plays a critical role in pain signaling, making it an important drug target. Here we studied the molecular interactions between µ-Conotoxin KIIIA (KIIIA) and the human NaV1.7 channel (hNaV1.7). We developed a structural model of hNaV1.7 using Rosetta computational modeling and performed in silico docking of KIIIA using RosettaDock to predict residues forming specific pairwise contacts between KIIIA and hNaV1.7. We experimentally validated these contacts using mutant cycle analysis. Comparison between our KIIIA-hNaV1.7 model and the cryo-EM structure of KIIIA-hNaV1.2 revealed key similarities and differences between NaV channel subtypes with potential implications for the molecular mechanism of toxin block. The accuracy of our integrative approach, combining structural data with computational modeling, experimental validation, and molecular dynamics simulations, suggests that Rosetta structural predictions will be useful for rational design of novel biologics targeting specific NaV channels.

7.
Acta Pharm Sin B ; 13(1): 68-81, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815047

RESUMEN

Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.

8.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35383850

RESUMEN

Somatostatin and its related peptides (SSRPs) form an important family of hormones with diverse physiological roles. The ubiquitous presence of SSRPs in vertebrates and several invertebrate deuterostomes suggests an ancient origin of the SSRP signaling system. However, the existence of SSRP genes outside of deuterostomes has not been established, and the evolutionary history of this signaling system remains poorly understood. Our recent discovery of SSRP-like toxins (consomatins) in venomous marine cone snails (Conus) suggested the presence of a related signaling system in mollusks and potentially other protostomes. Here, we identify the molluscan SSRP-like signaling gene that gave rise to the consomatin family. Following recruitment into venom, consomatin genes experienced strong positive selection and repeated gene duplications resulting in the formation of a hyperdiverse family of venom peptides. Intriguingly, the largest number of consomatins was found in worm-hunting species (>400 sequences), indicating a homologous system in annelids, another large protostome phylum. Consistent with this, comprehensive sequence mining enabled the identification of SSRP-like sequences (and their corresponding orphan receptor) in annelids and several other protostome phyla. These results established the existence of SSRP-like peptides in many major branches of bilaterians and challenge the prevailing hypothesis that deuterostome SSRPs and protostome allatostatin-C are orthologous peptide families. Finally, having a large set of predator-prey SSRP sequences available, we show that although the cone snail's signaling SSRP-like genes are under purifying selection, the venom consomatin genes experience rapid directional selection to target receptors in a changing mix of prey.


Asunto(s)
Conotoxinas , Caracol Conus , Animales , Conotoxinas/genética , Caracol Conus/genética , Neuropéptidos , Péptidos/genética , Somatostatina/genética , Ponzoñas
9.
Sci Adv ; 8(12): eabk1410, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35319982

RESUMEN

Somatostatin (SS) is a peptide hormone with diverse physiological roles. By investigating a deep-water clade of fish-hunting cone snails, we show that predator-prey evolution has generated a diverse set of SS analogs, each optimized to elicit specific systemic physiological effects in prey. The increased metabolic stability, distinct SS receptor activation profiles, and chemical diversity of the venom analogs make them suitable leads for therapeutic application, including pain, cancer, and endocrine disorders. Our findings not only establish the existence of SS-like peptides in animal venoms but also serve as a model for the synergy gained from combining molecular phylogenetics and behavioral observations to optimize the discovery of natural products with biomedical potential.


Asunto(s)
Caracol Conus , Somatostatina , Ponzoñas , Animales , Caracol Conus/química , Filogenia , Conducta Predatoria , Somatostatina/química , Ponzoñas/química
10.
Front Mol Biosci ; 9: 784419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265668

RESUMEN

The venomous marine snails are conventionally divided into three groups, the cone snails (family Conidae), the auger snails (family Terebridae) and the turrids (formerly all assigned to a single family, Turridae). In this study, a library of venom peptides from species conventionally assigned to the genus Turris was correlated to a phylogenetic analysis. Nucleotide sequences of multiple genes from transcriptomes were used to assess the phylogenetic relationships across a diverse set of species. The resulting tree shows that as conventionally defined, the conoidean genus Turris, is polyphyletic. We describe a new genus, Purpuraturris gen. nov., that comprises the outlier species. In addition to morphological distinctions, molecular data reveal that this group is divergent from Turris sensu stricto. The correlation between phylogenetic information and a family of peptide sequences was used to highlight those peptides mostly likely to be unique and intimately associated with biological diversity. The plethora of peptide sequences available requires two prioritization decisions: which subset of peptides to initially characterize, and after these are characterized, which to comprehensively investigate for potential biomedical applications such as drug developments. Life Science Identifiers: urn:lsid:zoobank.org; pub: 60D46561-28F0-4C39-BAC4-66DC8B4EAEA4.

11.
Pain ; 163(9): 1751-1762, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050960

RESUMEN

ABSTRACT: Intrathecal application of contulakin-G (CGX), a conotoxin peptide and a neurotensin analogue, has been demonstrated to be safe and potentially analgesic in humans. However, the mechanism of action for CGX analgesia is unknown. We hypothesized that spinal application of CGX produces antinociception through activation of the presynaptic neurotensin receptor (NTSR)2. In this study, we assessed the mechanisms of CGX antinociception in rodent models of inflammatory and neuropathic pain. Intrathecal administration of CGX, dose dependently, inhibited thermal and mechanical hypersensitivities in rodents of both sexes. Pharmacological and clustered regularly interspaced short palindromic repeats/Cas9 editing of NTSR2 reversed CGX-induced antinociception without affecting morphine analgesia. Electrophysiological and gene editing approaches demonstrated that CGX inhibition was dependent on the R-type voltage-gated calcium channel (Cav2.3) in sensory neurons. Anatomical studies demonstrated coexpression of NTSR2 and Cav2.3 in dorsal root ganglion neurons. Finally, synaptic fractionation and slice electrophysiology recordings confirmed a predominantly presynaptic effect. Together, these data reveal a nonopioid pathway engaged by a human-tested drug to produce antinociception.


Asunto(s)
Canales de Calcio Tipo R , Conotoxinas , Neuralgia , Receptores de Neurotensina , Analgesia , Animales , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo R/metabolismo , Conotoxinas/farmacología , Femenino , Ganglios Espinales/metabolismo , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuropéptidos/farmacología , Receptores de Neurotensina/metabolismo , Células Receptoras Sensoriales/metabolismo
12.
ACS Chem Biol ; 16(9): 1654-1662, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34423964

RESUMEN

Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.


Asunto(s)
Aminas/metabolismo , Canales de Calcio/metabolismo , Células Receptoras Sensoriales/metabolismo , Aminas/administración & dosificación , Animales , Calcio/metabolismo , Ganglios Espinales/metabolismo , Masculino , Ratones , Técnicas de Placa-Clamp , Transducción de Señal , Sensación Térmica/fisiología , Urocordados , Vertebrados
13.
ACS Chem Neurosci ; 12(14): 2693-2704, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34213884

RESUMEN

In our efforts to discover new drugs to treat pain, we identified molleamines A-E (1-5) as major neuroactive components of the sea slug, Pleurobranchus forskalii, and their prey, Didemnum molle, tunicates. The chemical structures of molleamines were elucidated by spectroscopy and confirmed by the total synthesis of molleamines A (1) and C (3). Synthetic 3 completely blocked acetylcholine-induced calcium flux in peptidergic nociceptors (PNs) in the somatosensory nervous system. Compound 3 affected neither the α7 nAChR nor the muscarinic acetylcholine receptors in calcium flux assays. In addition to nociceptors, 3 partially blocked the acetylcholine-induced calcium flux in the sympathetic nervous system, including neurons from the superior cervical ganglion. Electrophysiology revealed a block of α3ß4 (mouse) and α6/α3ß4 (rat) nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.4 and 3.1 µM, respectively. Molleamine C (3) is a partial antagonist, reaching a maximum block of 76-82% of the acetylcholine signal and showing no partial agonist response. Molleamine C (3) may thus provide a lead compound for the development of neuroactive compounds with unique biological properties.


Asunto(s)
Receptores Nicotínicos , Urocordados , Animales , Aplysia , Ratones , Antagonistas Nicotínicos/farmacología , Nylons , Ratas , Receptor Nicotínico de Acetilcolina alfa 7
14.
J Med Chem ; 64(13): 9271-9278, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34142837

RESUMEN

Venom-derived compounds are of broad interest in neuropharmacology and drug development. α-Conotoxins are small disulfide-containing peptides from Conus snails that target nicotinic acetylcholine receptors (nAChRs) and are in clinical development for non-opioid-based treatment of intractable pain. Although refined by evolution for interaction with target prey receptors, enhancements of pharmacological properties are needed for use in mammalian systems. Therefore, we synthesized analogues of α-conotoxin RgIA using a combination of selective penicillamine substitutions together with natural and non-natural amino acid replacements. This approach resulted in a peptide with 9000-fold increased potency on the human α9α10 nAChR and improved resistance to disulfide shuffling compared to the native peptide. The lead analogue, RgIA-5474, potently blocked α9α10 nAChRs, but not opioid- or other pain-related targets. In addition, RgIA-5474 effectively reversed chemotherapy-induced neuropathic pain.


Asunto(s)
Analgésicos/farmacología , Conotoxinas/farmacología , Desarrollo de Medicamentos , Neuralgia/tratamiento farmacológico , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Analgésicos/síntesis química , Analgésicos/química , Conotoxinas/síntesis química , Conotoxinas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Neuralgia/metabolismo , Antagonistas Nicotínicos/síntesis química , Antagonistas Nicotínicos/química , Relación Estructura-Actividad
15.
Front Pharmacol ; 12: 655981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054536

RESUMEN

Venomous molluscs (Superfamily Conoidea) comprise a substantial fraction of tropical marine biodiversity (>15,000 species). Prior characterization of cone snail venoms established that bioactive venom components used to capture prey, defend against predators and for competitive interactions were relatively small, structured peptides (10-35 amino acids), most with multiple disulfide crosslinks. These venom components ("conotoxins, conopeptides") have been widely studied in many laboratories, leading to pharmaceutical agents and probes. In this review, we describe how it has recently become clear that to varying degrees, cone snail venoms also contain bioactive non-peptidic small molecule components. Since the initial discovery of genuanine as the first bioactive venom small molecule with an unprecedented structure, a broad set of cone snail venoms have been examined for non-peptidic bioactive components. In particular, a basal clade of cone snails (Stephanoconus) that prey on polychaetes produce genuanine and many other small molecules in their venoms, suggesting that this lineage may be a rich source of non-peptidic cone snail venom natural products. In contrast to standing dogma in the field that peptide and proteins are predominantly used for prey capture in cone snails, these small molecules also contribute to prey capture and push the molecular diversity of cone snails beyond peptides. The compounds so far characterized are active on neurons and thus may potentially serve as leads for neuronal diseases. Thus, in analogy to the incredible pharmacopeia resulting from studying venom peptides, these small molecules may provide a new resource of pharmacological agents.

16.
J Med Chem ; 64(10): 7033-7043, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33949869

RESUMEN

In a program to identify pain treatments with low addiction potential, we isolated five steroids, conosteroids A-E (1-5), from the hypobranchial gland of the mollusk Conus geographus. Compounds 1-5 were active in a mouse dorsal root ganglion (DRG) assay that suggested that they might be analgesic. A synthetic analogue 6 was used for a detailed pharmacological study. Compound 6 significantly increased the pain threshold in mice in the hot-plate test at 2 and 50 mg/kg. Compound 6 at 500 nM antagonizes type-A γ-aminobutyric acid receptors (GABAARs). In a patch-clamp experiment, out of the six subunit combinations tested, 6 exhibited subtype selectivity, most strongly antagonizing α1ß1γ2 and α4ß3γ2 receptors (IC50 1.5 and 1.0 µM, respectively). Although the structures of 1-6 differ from those of known neuroactive steroids, they are cell-type-selective modulators of GABAARs, expanding the known chemical space of neuroactive steroids.


Asunto(s)
Analgésicos/química , Caracol Conus/química , Antagonistas del GABA/química , Neuroesteroides/química , Receptores de GABA/química , Potenciales de Acción/efectos de los fármacos , Analgésicos/síntesis química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Caracol Conus/metabolismo , Modelos Animales de Enfermedad , Antagonistas del GABA/aislamiento & purificación , Antagonistas del GABA/farmacología , Antagonistas del GABA/uso terapéutico , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Ratones , Ratones Endogámicos C57BL , Conformación Molecular , Neuroesteroides/aislamiento & purificación , Neuroesteroides/farmacología , Neuroesteroides/uso terapéutico , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/patología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de GABA/metabolismo
17.
J Nat Prod ; 84(4): 1232-1243, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33764053

RESUMEN

Natural products such as conotoxins have tremendous potential as tools for biomedical research and for the treatment of different human diseases. Conotoxins are peptides present in the venoms of predatory cone snails that have a rich diversity of pharmacological functions. One of the major bottlenecks in natural products research is the rapid identification and evaluation of bioactive molecules. To overcome this limitation, we designed a set of light-induced behavioral assays in zebrafish larvae to screen for bioactive conotoxins. We used this screening approach to test several unique conotoxins derived from different cone snail clades and discovered that a conorfamide from Conus episcopatus, CNF-Ep1, had the most dramatic alterations in the locomotor behavior of zebrafish larvae. Interestingly, CNF-Ep1 is also bioactive in several mouse assay systems when tested in vitro and in vivo. Our novel screening platform can thus accelerate the identification of bioactive marine natural products, and the first compound discovered using this assay has intriguing properties that may uncover novel neuronal circuitry.


Asunto(s)
Larva/efectos de los fármacos , Locomoción/efectos de los fármacos , Venenos de Moluscos/farmacología , Neuropéptidos/farmacología , Pez Cebra , Animales , Caracol Conus/química , Femenino , Masculino , Ratones
18.
Pharmacol Biochem Behav ; 205: 173182, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774007

RESUMEN

Cannabinoid (CB) receptor agonists show robust antinociceptive effects in various pain models. However, most of the clinically potent CB1 receptor-active drugs derived from cannabis are considered concerning due to psychotomimetic side effects. Selective CB receptor ligands that do not induce CNS side effects are of clinical interest. The venoms of marine snail Conus are a natural source of various potent analgesic peptides, some of which are already FDA approved. In this study we evaluated the ability of several Conus venom extracts to interact with CB1 receptor. HEK293 cells expressing CB1 receptors were treated with venom extracts and CB1 receptor internalization was analyzed by immunofluorescence. Results showed C. textile (C. Tex) and C. miles (C. Mil) samples as the most potent. These were serially subfractionated by HPLC for subsequent analysis by internalization assays and for analgesic potency evaluated in the formalin test and after peripheral nerve injury. Intrathecal injection of C. Tex and C. Mil subfractions reduced flinching/licking behavior during the second phase of formalin test and attenuated thermal and mechanical allodynia in nerve injury model. Treatment with proteolytic enzymes reduced CB1 internalization of subfractions, indicating the peptidergic nature of CB1 active component. Further HPLC purification revealed two potent antinociceptive subfractions within C. Tex with CB1 and possible CB2 activity, with mild to no side effects in the CB tetrad assessment. CB conopeptides can be isolated from these active Conus venom-derived samples and further developed as novel analgesic agents for the treatment of chronic pain using cell based or gene therapy approaches.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Dolor Crónico/tratamiento farmacológico , Venenos de Moluscos/farmacología , Analgésicos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/administración & dosificación , Cannabinoides/farmacología , Dolor Crónico/metabolismo , Caracol Conus/química , Terapia Genética/métodos , Células HEK293 , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Inyecciones Espinales , Venenos de Moluscos/administración & dosificación , Dimensión del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/metabolismo , Ratas , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
19.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33712468

RESUMEN

Venomous animals hunt using bioactive peptides, but relatively little is known about venom small molecules and the resulting complex hunting behaviors. Here, we explored the specialized metabolites from the venom of the worm-hunting cone snail, Conus imperialis Using the model polychaete worm Platynereis dumerilii, we demonstrate that C. imperialis venom contains small molecules that mimic natural polychaete mating pheromones, evoking the mating phenotype in worms. The specialized metabolites from different cone snails are species-specific and structurally diverse, suggesting that the cones may adopt many different prey-hunting strategies enabled by small molecules. Predators sometimes attract prey using the prey's own pheromones, in a strategy known as aggressive mimicry. Instead, C. imperialis uses metabolically stable mimics of those pheromones, indicating that, in biological mimicry, even the molecules themselves may be disguised, providing a twist on fake news in chemical ecology.


Asunto(s)
Caracol Conus , Conducta Predatoria , Animales , Caracol Conus/química , Péptidos/química , Feromonas/química , Caracoles
20.
Annu Rev Pharmacol Toxicol ; 61: 9-23, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33411581

RESUMEN

My path to research in neuropharmacology has been a coalescing of my training as a molecular biologist and my intense interest in an esoteric group of animals, the fish-hunting cone snails. Attempting to bridge these two disparate worlds has led me to an idiosyncratic career as a pharmacologist.


Asunto(s)
Caracol Conus , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA