Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 7(14): 3339-3349, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36995275

RESUMEN

ß-thalassemia is characterized by chronic hepcidin suppression and iron overload, even in patients who have not undergone transfusion. The HbbTh3/+ (Th3/+) mouse model of nontransfusion-dependent ß-thalassemia (NTDBT) partially recapitulates the human phenotype but lacks chronic hepcidin suppression, progressive iron accumulation into adulthood, or the interindividual variation of the rate of iron loading observed in patients. Erythroferrone (ERFE) is an erythroid regulator that suppresses hepcidin during increased erythropoiesis. ERFE concentrations in the sera of patients with NTDBT correlate negatively with hepcidin levels but vary over a broad range, possibly explaining the variability of iron overload in patients. To analyze the effect of high ERFE concentrations on hepcidin and iron overload in NTDBT, we crossed Th3/+ mice with erythroid ERFE-overexpressing transgenic mice. Th3/ERFE-transgenic mice suffered high perinatal mortality, but embryos at E18.5 showed similar viability, appearance, and anemia effects as Th3/+ mice. Compared with Th3/+ littermates, adult Th3/ERFE mice had similarly severe anemia but manifested greater suppression of serum hepcidin and increased iron accumulation in the liver, kidney, and spleen. The Th3/ERFE mice had much higher concentrations of serum ERFE than either parental strain, a finding attributable to both a higher number of erythroblasts and higher production of ERFE by each erythroblast.Th3/+ and Th3/ERFE mice had similar red blood cell count and shortened erythrocyte lifespan, but Th3/ERFE mice had an increased number of erythroid precursors in their larger spleens, indicative of aggravated ineffective extramedullary erythropoiesis. Thus, high ERFE concentrations increase the severity of nontransfusional iron overload and ineffective erythropoiesis in thalassemic mice but do not substantially affect anemia or hemolysis.


Asunto(s)
Sobrecarga de Hierro , Talasemia beta , Adulto , Humanos , Ratones , Animales , Hepcidinas/genética , Talasemia beta/genética , Eritropoyesis , Sobrecarga de Hierro/etiología , Hierro , Ratones Transgénicos
2.
Blood ; 139(3): 439-451, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34614145

RESUMEN

The hormone erythroferrone (ERFE) is produced by erythroid cells in response to hemorrhage, hypoxia, or other erythropoietic stimuli, and it suppresses the hepatic production of the iron-regulatory hormone hepcidin, thereby mobilizing iron for erythropoiesis. Suppression of hepcidin by ERFE is believed to be mediated by interference with paracrine bone morphogenetic protein (BMP) signaling that regulates hepcidin transcription in hepatocytes. In anemias with ineffective erythropoiesis, ERFE is pathologically overproduced, but its contribution to the clinical manifestations of these anemias is not well understood. We generated 3 lines of transgenic mice with graded erythroid overexpression of ERFE and found that they developed dose-dependent iron overload, impaired hepatic BMP signaling, and relative hepcidin deficiency. These findings add to the evidence that ERFE is a mediator of iron overload in conditions in which ERFE is overproduced, including anemias with ineffective erythropoiesis. At the highest levels of ERFE overexpression, the mice manifested decreased perinatal survival, impaired growth, small hypofunctional kidneys, decreased gonadal fat depots, and neurobehavioral abnormalities, all consistent with impaired organ-specific BMP signaling during development. Neutralizing excessive ERFE in congenital anemias with ineffective erythropoiesis may not only prevent iron overload but may have additional benefits for growth and development.


Asunto(s)
Citocinas/metabolismo , Discapacidades del Desarrollo/metabolismo , Células Eritroides/metabolismo , Sobrecarga de Hierro/metabolismo , Proteínas Musculares/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Citocinas/genética , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/genética , Células Eritroides/citología , Femenino , Hepcidinas/metabolismo , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Musculares/genética , Transducción de Señal , Regulación hacia Arriba
3.
J Am Coll Nutr ; 36(2): 127-136, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28067588

RESUMEN

Although fiber is well recognized for its effect on laxation, increasing evidence supports the role of fiber in the prevention and treatment of chronic disease. The aim of this review is to provide an overview of the health benefits of fiber and its fermentation, and describe how the products of fermentation may influence disease risk and treatment. Higher fiber intakes are associated with decreased risk of cardiovascular disease, type 2 diabetes, and some forms of cancer. Fiber may also have a role in lowering blood pressure and in preventing obesity by limiting weight gain. Fiber is effective in managing blood glucose in type 2 diabetes, useful for weight loss, and may provide therapeutic adjunctive roles in kidney and liver disease. In addition, higher fiber diets are not contraindicated in inflammatory bowel disease or irritable bowel syndrome and may provide some benefit. Common to the associations with disease reduction is fermentation of fiber and its potential to modulate microbiota and its activities and inflammation, specifically the production of anti-inflammatory short chain fatty acids, primarily from saccharolytic fermentation, versus the deleterious products of proteolytic activity. Because fiber intake is inversely associated with all-cause mortality, mechanisms by which fiber may reduce chronic disease risk and provide therapeutic benefit to those with chronic disease need further elucidation and large, randomized controlled trials are needed to confirm causality.Teaching Points• Strong evidence supports the association between higher fiber diets and reduced risk of cardiovascular disease, type 2 diabetes, and some forms of cancer.• Higher fiber intakes are associated with lower body weight and body mass index, and some types of fiber may facilitate weight loss.• Fiber is recommended as an adjunctive medical nutritional therapy for type 2 diabetes, chronic kidney disease, and certain liver diseases.• Fermentation and the resulting shifts in microbiota composition and its activity may be a common means by which fiber impacts disease risk and management.


Asunto(s)
Fibras de la Dieta/administración & dosificación , Alimentos Fermentados , Enfermedad Crónica/prevención & control , Fermentación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...