Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Photoacoustics ; 31: 100518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325395

RESUMEN

Here we report on a study of the non-radiative relaxation dynamic of 12CH4 and 13CH4 in wet nitrogen-based matrixes by using the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique. The dependence of the QEPAS signal on pressure at fixed matrix composition and on H2O concentration at fixed pressure was investigated. We demonstrated that QEPAS measurements can be used to retrieve both the effective relaxation rate in the matrix, and the V-T relaxation rate associated to collisions with nitrogen and water vapor. No significant differences in measured relaxation rates were observed between the two isotopologues.

2.
Photoacoustics ; 29: 100438, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36582842

RESUMEN

The increase in fatal accidents and chronic illnesses caused by hydrogen sulfide (H2S) exposure occurring in various workplaces is pushing the development of sensing systems for continuous and in-field monitoring of this hazardous gas. We report here on the design and realization of a Near-IR quartz-enhanced photoacoustic sensor (QEPAS) for H2S leaks detection. H2S QEPAS signal was measured in matrixes containing up to 1 % of methane (CH4) and nitrogen (N2) which were chosen as the laboratory model environment for leakages from oil and gas wells or various industrial processes where H2S and CH4 can leak simultaneously. An investigation of the influence of CH4 on H2S relaxation and photoacoustic generation was proposed in this work and the sensor performances were carefully assessed with respect to CH4 content in the mixture. We demonstrated the high selectivity, with no cross talk between H2S, H2O and CH4 absorption lines, high sensitivity, and fast response time of the developed sensor, achieving a minimum detection limit (MDL) of 2.5 ppm for H2S with 2 s lock-in integration time. The employed 2.6 µm laser allowed us to employ the sensor also for CH4 detection, achieving an MDL of 85 ppm. The realized QEPAS sensor lends itself to the development of a portable and compact device for industrial monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...