Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4212, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760343

RESUMEN

For decades, it was considered all but impossible to perform Stark spectroscopy on molecules in a liquid solution, because their concomitant orientation to the applied electric field results in overwhelming background signals. A way out was to immobilize the solute molecules by freezing the solvent. While mitigating solute orientation, freezing removes the possibility to study molecules in liquid environments at ambient conditions. Here we demonstrate time-resolved THz Stark spectroscopy, utilizing intense single-cycle terahertz pulses as electric field source. At THz frequencies, solute molecules have no time to orient their dipole moments. Hence, dynamic Stark spectroscopy on the time scales of molecular vibrations or rotations in both non-polar and polar solvents at arbitrary temperatures is now possible. We verify THz Stark spectroscopy for two judiciously selected molecular systems and compare the results to conventional Stark spectroscopy and first principle calculations.

2.
Nat Commun ; 14(1): 6596, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852982

RESUMEN

The advent of intense terahertz (THz) sources opened a new era when the demonstration of the acceleration and manipulation of free electrons by THz pulses became within reach. THz-field-driven electron emission was predicted to be confined to a single burst due to the single-cycle waveform. Here we demonstrate the confinement of single-cycle THz-waveform-driven electron emission to one of the two half cycles from a solid surface emitter. Either the leading or the trailing half cycle was active, controlled by reversing the field polarity. THz-driven single-burst surface electron emission sources, which do not rely on field-enhancement structures, will impact the development of THz-powered electron acceleration and manipulation devices, all-THz compact electron sources, THz waveguides and telecommunication, THz-field-based measurement techniques and solid-state devices.

3.
Opt Lett ; 43(24): 5905-5908, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30547966

RESUMEN

Controlling light polarization is one of the most essential routines in modern optical technology. Since the demonstration of optical pulse shaping by spatial light modulators and its potential in controlling the quantum reaction pathways, it paved the way for many applications as a coherent control of the photoionization process or as polarization shaping of terahertz (THz) pulses. Here, we evidenced efficient nonresonant and noncollinear χ(2)-type light-matter interaction in femtosecond polarization-sensitive time-resolved optical measurements. Such nonlinear optical interaction of visible light and ultrashort THz pulses leads to THz modulation of visible light polarization in bulk LiNbO3 crystal. Theoretical simulations based on the wave propagation equation capture the physical processes underlying this nonlinear effect. Apart from the observed tunable polarization modulation of visible pulses at ultrahigh frequencies, this physical phenomenon can be envisaged in THz depth-profiling of materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA