Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054673

RESUMEN

Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the silica nanoparticles (nSi). The synthesized silica nanoparticles (nSi) were characterized by ultraviolet-visible (UV-Vis) spectrophotometry, X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FTIR). All the results obtained jointly and independently verified the formation of silica nanoparticles. In addition, EDAX analysis confirmed the high purity of the nSi composed only of Si and O, with no other impurities. XRD spectroscopy showed the characteristic diffraction peaks for nSi and confirmed the formation of an amorphous nature. The average size of nSi obtained is 18 nm. The surface charge and stability of nSi were analyzed by using the dynamic light scattering (DLS) and thus revealed that the nSi samples have a negative charge (-20.3 mV). In addition, the seed germination and the shoot and root formation on Vigna unguiculata were investigated by using the nSi. The results revealed that the application of nSi enhanced the germination in V. unguiculata. However, further research studies must be performed in order to determine the toxic effect of biogenic nSi before mass production and use of agricultural applications.

2.
Materials (Basel) ; 14(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923655

RESUMEN

The aim of this work is to design and optimize the process of functionalization of cellulose fibers by organosilane functional groups using low-pressure microwave plasma discharge with hexamethyldisiloxane (HMDSO) precursor in order to prepare a compatible hydrophobic filler for composites with nonpolar thermoplastic matrices. Particular attention was paid to the study of agglomeration of cellulose fibers in the mixture with polypropylene. In our contribution, the dependence of the surface wettability on used process gas and treatment time was investigated. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses were applied to characterize the surface morphology and chemical composition of the cellulose fibers. It was observed that the plasma treatment in oxygen process gas led to the functionalization of cellulose fibers by organosilane functional groups without degradation. In addition, the treated cellulose was highly hydrophobic with water contact angle up to 143°. The use of treated cellulose allowed to obtain a homogeneous mixture with polypropylene powder due to the significantly lower tendency of the functionalized cellulose fibers to agglomerate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...