Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 15(7): e0116624, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38934618

RESUMEN

Contemporary antifungal therapies utilized to treat filamentous fungal infections are inhibited by intrinsic and emerging drug resistance. Consequently, there is an urgent need to develop novel antifungal compounds that are effective against drug-resistant filamentous fungi. Here, we utilized an Aspergillus fumigatus cell-based high-throughput screen to identify small molecules with antifungal activity that also potentiated triazole activity. The screen identified 16 hits with promising activity against A. fumigatus. A nonspirocyclic piperidine, herein named MBX-7591, exhibited synergy with triazole antifungal drugs and activity against pan-azole-resistant A. fumigatus isolates. MBX-7591 has additional potent activity against Rhizopus species and CO2-dependent activity against Cryptococcus neoformans. Chemical, genetic, and biochemical mode of action analyses revealed that MBX-7591 increases cell membrane saturation by decreasing oleic acid content. MBX-7591 has low toxicity in vivo and shows good efficacy in decreasing fungal burden in a murine model of invasive pulmonary aspergillosis. Taken together, our results suggest MBX-7591 is a promising hit with a novel mode of action for further antifungal drug development to combat the rising incidence of triazole-resistant filamentous fungal infections.IMPORTANCEThe incidence of infections caused by fungi continues to increase with advances in medical therapies. Unfortunately, antifungal drug development has not kept pace with the incidence and importance of fungal infections, with only three major classes of antifungal drugs currently available for use in the clinic. Filamentous fungi, also called molds, are particularly recalcitrant to contemporary antifungal therapies. Here, a recently developed Aspergillus fumigatus cell reporter strain was utilized to conduct a high-throughput screen to identify small molecules with antifungal activity. An emphasis was placed on small molecules that potentiated the activity of contemporary triazole antifungals and led to the discovery of MBX-7591. MBX-7591 potentiates triazole activity against drug-resistant molds such as A. fumigatus and has activity against Mucorales fungi. MBX-7591's mode of action involves inhibiting the conversion of saturated to unsaturated fatty acids, thereby impacting fungal membrane integrity. MBX-7591 is a novel small molecule with antifungal activity poised for lead development.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Farmacorresistencia Fúngica , Ácidos Grasos Insaturados , Pruebas de Sensibilidad Microbiana , Triazoles , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Triazoles/farmacología , Ratones , Animales , Ácidos Grasos Insaturados/farmacología , Humanos , Ensayos Analíticos de Alto Rendimiento , Sinergismo Farmacológico , Rhizopus/efectos de los fármacos , Rhizopus/genética , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Piperidinas/farmacología , Modelos Animales de Enfermedad , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Aspergilosis Pulmonar Invasiva/microbiología
2.
Nat Commun ; 13(1): 5595, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151093

RESUMEN

Tamoxifen is a selective estrogen receptor (ER) modulator that is used to treat ER-positive breast cancer, but that at high doses kills both ER-positive and ER-negative breast cancer cells. We recapitulate this off-target effect in Caenorhabditis elegans, which does not have an ER ortholog. We find that different bacteria dramatically modulate tamoxifen toxicity in C. elegans, with a three-order of magnitude difference between animals fed Escherichia coli, Comamonas aquatica, and Bacillus subtilis. Remarkably, host fatty acid (FA) biosynthesis mitigates tamoxifen toxicity, and different bacteria provide the animal with different FAs, resulting in distinct FA profiles. Surprisingly these bacteria modulate tamoxifen toxicity by different death mechanisms, some of which are modulated by FA supplementation and others by antioxidants. Together, this work reveals a complex interplay between microbiota, FA metabolism and tamoxifen toxicity that may provide a blueprint for similar studies in more complex mammals.


Asunto(s)
Receptores de Estrógenos , Tamoxifeno , Animales , Bacterias/metabolismo , Caenorhabditis elegans/metabolismo , Dieta , Ácidos Grasos/metabolismo , Mamíferos/metabolismo , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
3.
PLoS Genet ; 10(12): e1004829, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474470

RESUMEN

In C. elegans, removal of the germline extends lifespan significantly. We demonstrate that the nuclear hormone receptor, NHR-49, enables the response to this physiological change by increasing the expression of genes involved in mitochondrial ß-oxidation and fatty-acid desaturation. The coordinated augmentation of these processes is critical for germline-less animals to maintain their lipid stores and to sustain de novo fat synthesis during adulthood. Following germline ablation, NHR-49 is up-regulated in somatic cells by the conserved longevity determinants DAF-16/FOXO and TCER-1/TCERG1. Accordingly, NHR-49 overexpression in fertile animals extends their lifespan modestly. In fertile adults, nhr-49 expression is DAF-16/FOXO and TCER-1/TCERG1 independent although its depletion causes age-related lipid abnormalities. Our data provide molecular insights into how reproductive stimuli are integrated into global metabolic changes to alter the lifespan of the animal. They suggest that NHR-49 may facilitate the adaptation to loss of reproductive potential through synchronized enhancement of fatty-acid oxidation and desaturation, thus breaking down some fats ordained for reproduction and orchestrating a lipid profile conducive for somatic maintenance and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans , Ácidos Grasos/metabolismo , Células Germinativas/metabolismo , Metabolismo de los Lípidos/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Longevidad/genética , Oxidación-Reducción , Factores de Elongación de Péptidos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Reproducción/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...