Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
One Health ; 18: 100762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38910948

RESUMEN

Livestock associated antimicrobial resistance (AMR) can reduce productivity and cause economic losses, threatening the livelihoods of poor farming communities in low-income settings. We investigated the practices and risk factors for increased antibiotic use, and AMR in Escherichia coli including resistance to human critically important antibiotics like cefotaxime and colistin in semi-intensive and free-range poultry farms in Uganda. Samples and farm management data were collected from 402 poultry farms in two districts between October 2021 to March 2022. Samples were processed to isolate E. coli and to quantify cefotaxime (CTX) and colistin (COL) resistant coliforms. The identification of presumptive E. coli isolated on MacConkey agar without antibiotics, was confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and subjected to antimicrobial susceptibility testing by disk diffusion using EUCAST guidelines. Our models indicated that antibiotic use was associated with production intensity, and type of feed used. Moreover, semi-intensive farmers had better knowledge on antibiotic use compared to farmers in the free-range system. In semi-intensive farms, 52% harbored COLR and 57% CTXR coliforms. In free-range farms, 54% had COLR and 67% CTXR coliforms. Resistance to tetracycline, ampicillin and enrofloxacin were more frequent in semi-intensive farms compared to the free-range farms. Multi-drug resistant E. coli were identified in both poultry production systems despite different management and antibiotic use practices. There was no significant relationship between antibiotic use and resistance for the six antibiotics tested.

2.
PLoS One ; 19(6): e0303271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38924011

RESUMEN

Antibiotic persistence is a phenomenon, where a small fraction of a bacterial population expresses a phenotypic variation that allows them to survive antibiotic treatment, which is lethal to the rest of the population. These cells are called persisters cells, and their occurrence has been associated with recurrent disease. Streptococcus agalactiae is a human pathobiont, able to cause invasive infections, and recurrent infections have been reported to occur in both newborns and adults. In this study, we demonstrated that S. agalactiae NEM316 can form persister cells when exposed to antibiotics from different classes. The frequency of persister cell formation was dependent on bacterial growth phase and the class of antibiotics. The ability to form persister cells in response to penicillin was shown to be a general trait among different clinical S. agalactiae isolates, independent of sero- and sequence-type. Taken together, this study shows the existence of antibiotic tolerant S. agalactiae persister cells, which may explain why this bacterial species frequently persists after treatment of invasive infection and can be associated with recurrent disease.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Streptococcus agalactiae , Streptococcus agalactiae/efectos de los fármacos , Antibacterianos/farmacología , Humanos , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Farmacorresistencia Bacteriana/efectos de los fármacos , Penicilinas/farmacología
3.
Sci Rep ; 14(1): 4163, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378700

RESUMEN

Resistance against aminoglycosides is widespread in bacteria. This study aimed to identify genes that are important for growth of E. coli during aminoglycoside exposure, since such genes may be targeted to re-sensitize resistant E. coli to treatment. We constructed three transposon mutant libraries each containing > 230.000 mutants in E. coli MG1655 strains harboring streptomycin (aph(3″)-Ib/aph(6)-Id), gentamicin (aac(3)-IV), or neomycin (aph(3″)-Ia) resistance gene(s). Transposon Directed Insertion-site Sequencing (TraDIS), a combination of transposon mutagenesis and high-throughput sequencing, identified 56 genes which were deemed important for growth during streptomycin, 39 during gentamicin and 32 during neomycin exposure. Most of these fitness-genes were membrane-located (n = 55) and involved in either cell division, ATP-synthesis or stress response in the streptomycin and gentamicin exposed libraries, and enterobacterial common antigen biosynthesis or magnesium sensing/transport in the neomycin exposed library. For validation, eight selected fitness-genes/gene-clusters were deleted (minCDE, hflCK, clsA and cpxR associated with streptomycin and gentamicin resistance, and phoPQ, wecA, lpp and pal associated with neomycin resistance), and all mutants were shown to be growth attenuated upon exposure to the corresponding antibiotics. In summary, we identified genes that are advantageous in aminoglycoside-resistant E. coli during antibiotic stress. In addition, we increased the understanding of how aminoglycoside-resistant E. coli respond to antibiotic exposure.


Asunto(s)
Aminoglicósidos , Antibacterianos , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Estreptomicina/farmacología , Gentamicinas/farmacología , Neomicina/farmacología
4.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366187

RESUMEN

Strains of Salmonella Enteritidis (SEnt, n = 10) and S. Typhimurium (STm, n = 11), representing clones with high impact on human health, and strains of S. 4,12: b:- (S412B n = 11) and S. Liverpool (SLiv, n = 4), representing clones with minor impact on human health were characterized for 16 growth, stress, and virulence phenotypes to investigate whether systematic differences exist in their performance in these phenotypes and whether there was correlation between performance in different phenotypes. The term serotype was not found to be predictive of a certain type of performance in any phenotype, and surprisingly, on average, strains of SEnt and STm were not significantly better in adhering to and invading cultured intestinal cells than the less pathogenic types. Forest analysis identified desiccation tolerance and the ability to grow at 42°C with high salt as the characters that separated serovars with low human health impact (S412B/SLiv) from serovars with high human health impact (SEnt/STm). The study showed that variation in phenotypes was high even within serovars and correlation between phenotypes was low, i.e. the way that a strain performed phenotypically in one of the tested conditions had a low predictive value for the performance of the strain in other conditions.


Asunto(s)
Salmonelosis Animal , Salmonella enterica , Humanos , Animales , Salmonella enteritidis/genética , Virulencia , Salmonella typhimurium/genética , Fenotipo , Serogrupo
5.
Antibiotics (Basel) ; 13(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247632

RESUMEN

The increasing prevalence of antimicrobial resistance and the limited availability of new antimicrobial agents have created an urgent need for new approaches to combat these issues. One such approach involves reevaluating the use of old antibiotics to ensure their appropriate usage and maximize their effectiveness, as older antibiotics could help alleviate the burden on newer agents. An example of such an antibiotic is chloramphenicol (CHL), which is rarely used due to its hematological toxicity. In the current study, we employed a previously published transposon mutant library in MG1655/pTF2::blaCTX-M-1, containing over 315,000 unique transposon insertions, to identify the genetic factors that play an important role during growth in the presence of CHL. The list of conditionally essential genes, collectively referred to as the secondary resistome (SR), included 67 genes. To validate our findings, we conducted gene knockout experiments on six genes: arcA, hfq, acrZ, cls, mdfA, and nlpI. Deleting these genes resulted in increased susceptibility to CHL as demonstrated by MIC estimations and growth experiments, suggesting that targeting the products encoded from these genes may reduce the dose of CHL needed for treatment and hence reduce the toxicity associated with CHL treatment. Thus, the gene products are indicated as targets for antibiotic adjuvants to favor the use of CHL in modern medicine.

6.
Vet Microbiol ; 286: 109885, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812833

RESUMEN

Calf-diarrhoea is a major health problem in dairy calves and a primary reason for use of antimicrobials. We aimed to investigate the effect of feeding milk fermented with a combination of four probiotic bacterial strains to young-calves on; occurrence of diarrhoea and associated-pathogens (bacteria, virus and parasites), shedding of Salmonella Dublin and Campylobacter, occurrence of virulence genes linked to Clostridium perfringens, Enterotoxigenic Escherichia coli and shiga-toxin producing E. coli (STEC), as well as growth performance. For this, 143 new-born calves from three Danish dairy-farms were allocated into Treatment- (fed the fermented milk for the first 8-weeks-of-life) and Control-groups (fed regular farm-milk). Diarrhoea was observed in 18.6 % (Farm 1), 22.4 % (Farm 2) and 15.7 % (Farm 3) of the total registrations mainly within the first 3-weeks-of-life. C. perfringens was the most frequently detected pathogen. The treatment did not affect the occurrence of virulence genes linked to STEC and C. perfringens and, overall, their detection levels were very low/undetected. The statistical model applied found no significant effect of the treatment on prevalence of early-diarrhoea (≤ 3 weeks), late-diarrhoea (>3 weeks), occurrence of C. perfringens and Cryptosporidium parvum or levels of Campylobacter spp. Limited detection of the other pathogens and associated virulence-genes under study, did not allow for assessment of the impact of the treatment on their occurrence. Notably, the feeding-approach showed a significant detrimental effect on daily-weight-gain. The inefficacy of the treatment may be associated with the complexity of influencing factors under field conditions including management practices.


Asunto(s)
Enfermedades de los Bovinos , Criptosporidiosis , Cryptosporidium , Diarrea , Animales , Bovinos , Escherichia coli , Criptosporidiosis/epidemiología , Leche/microbiología , Diarrea/microbiología , Diarrea/veterinaria , Bacterias , Clostridium perfringens/genética , Enfermedades de los Bovinos/microbiología , Heces/microbiología , Industria Lechera
7.
Porcine Health Manag ; 9(1): 33, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434248

RESUMEN

BACKGROUND: Recently, in-feed medicinal zinc has been phased out in pig production in the European Union. This makes updated knowledge about porcine post-weaning diarrhea (PWD) crucial. The objectives of the present study were to investigate (i) the clinical presentation of PWD in pigs housed in Danish herds that did not use medicinal zinc, specifically the prevalence of diarrhea and whether PWD was associated to clinical signs of dehydration or altered body temperature; (ii) which microorganism are associated to PWD; and iii) whether measurements of the fecal pH have a potential to be used diagnostically to differentiate between infectious etiologies in cases of PWD. RESULTS: The prevalence of diarrhea varied considerably between the outbreaks in the nine studied herds (median = 0.58, range = 0.10; 0.94). In a cross-sectional design (n = 923), diarrhea was associated with reduced rectal temperature and alkaline feces. Diarrhea was also associated with observably reduced skin elasticity, possibly indicating dehydration. In both diarrheic case pigs (n = 87) and control pigs (n = 86), the presence of Brachyspira pilosicoli, Clostridium perfringens, Cryptosporidium spp., Cystoisopora suis, enterotoxigenic Escherichia coli, Lawsonia intracellularis, porcine circovirus types 2 and 3, rotavirus A, B, C, and H, Samonella enterica spp. enterica, and Trichuris suis was described. PWD was associated with high levels of enterotoxigenic E. coli shedding (odds ratio versus no E. coli detection = 4.79 [CI 1.14; 12.62]). Diarrhea was associated with high levels of rotavirus A shedding (odds ratio versus no/low rotavirus A = 3.80 [CI 1.33; 7.97]). The association between microbiological findings in diarrheic pigs and fecal pH was negligible. CONCLUSIONS: Enterotoxigenic E. coli was confirmed to be a cause of PWD; however, cases of PWD where enterotoxigenic E. coli was not detected in high levels occurred commonly, and this adds to the increasing evidence suggesting that PWD is not necessarily a result of enteric colibacillosis. Rotaviral enteritis might be a differential diagnosis of PWD. pH-measurements cannot be used to differentiate between differential diagnoses for PWD.

8.
Acta Vet Scand ; 65(1): 30, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400879

RESUMEN

BACKGROUND: Post-weaning diarrhoea (PWD) is a multifactorial condition and the most well documented infectious cause is enterotoxigenic Escherichia coli. The objective of the study was to investigate possible associations between pathological manifestations and pathogens in pigs with and without PWD. The study was conducted as a case-control study and included a total of 173 pigs from 9 different commercial intensive indoor production herds in eastern Denmark. RESULTS: Based on clinical examination, a total of 89 piglets with PWD (cases) and 84 piglets without PWD (controls) were included. Most of the pigs (n = 105/173) presented gastric lesions, which were more frequently observed in the control group. The odds of gastric ulcers were lower among pigs with PWD compared to pigs without PWD with an odds ratio (OR) of 0.2 (0.0; 0.7). Abnormal content in the colon was associated with PWD, with an OR of 6.5 (3.2; 14.3). No apparent association was found between lesions and the various pathogens or a combination of these. The odds of neutrophilic granulocyte infiltration were lower in the jejunum among pigs with PWD (OR 0.3 [0.1; 0.6]) compared to pigs without PWD. The association between neutrophilic granulocyte infiltration in jejunum and PWD differed between the herds (P = 0.03). Furthermore, the associations between PWD and hyperleukocytosis (P = 0.04) or infiltration of eosinophilic granulocytes (P = 0.04) in ileum were also herd dependent. Histopathology revealed several lesions not relatable to PWD. CONCLUSION: The association between lesions and specific pathogens or PWD is more complex than anticipated.


Asunto(s)
Infecciones por Escherichia coli , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Escherichia coli/veterinaria , Estudios de Casos y Controles , Diarrea/veterinaria , Diarrea/patología , Tracto Gastrointestinal , Yeyuno , Enfermedades de los Porcinos/patología
9.
Antibiotics (Basel) ; 12(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37370312

RESUMEN

Due to the rapid spread of CTX-M type ESBLs, the rate of resistance to third-generation cephalosporin has increased among Gram-negative bacteria, especially in Escherichia coli, and there is a need to find ways to re-sensitize ESBL E. coli to cephalosporin treatment. A previous study showed that genes involved in protein synthesis were significantly up-regulated in the presence of subinhibitory concentration of cefotaxime (CTX) in a CTX-M-1-producing E. coli. In this study, the interaction between CTX and gentamicin (GEN), targeting protein synthesis, was evaluated in MG1655/pTF2, and the MIC of CTX was strongly reduced (128-fold) in the presence of this combnation therapy. Since the underlying mechanism behind this synergy is not known, we constructed a saturated transposon mutant library in MG1655/pTF2::blaCTX-M-1 containing 315,925 unique transposon insertions to measure mutant depletion upon exposure to CTX, GEN, and combination treatment of CTX and GEN by Transposon Directed Insertion-site Sequencing (TraDIS). We identified 57 genes that were depleted (log2FC ≤ -2 and with q.value ≤ 0.01) during exposure to CTX, 18 for GEN, and 31 for combination treatment of CTX and GEN. For validation, we deleted eight genes that were either uniquely identified in combination treatment, overlapped with monotherapy of GEN, or were shared between combination treatment and monotherapy with CTX and GEN. Of these genes, we found that the inactivation of dnaK, mnmA, rsgA, and ybeD increased the efficacy of both CTX and GEN treatment, the inactivation of cpxR and yafN increased the efficacy of only CTX, and the inactivation of mnmA, rsgA, and ybeD resulted in increased synergy between CTX and GEN. Thus, the study points to putative targets for helper drugs that can restore susceptibility to these important drugs, and it indicates that genes involved in protein synthesis are essential for the synergy between these two drugs. In summary, the study identified mutants that sensitize ESBL-producing E. coli to CTX and a combination of CTX and GEN, and it increased our understanding of the mechanism behind synergy between ß-lactam and aminoglycoside drugs. This forms a framework for developing new strategies to combat infections caused by resistant bacteria.

10.
Sci Rep ; 13(1): 10229, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353515

RESUMEN

Multidrug-resistant ESBL-producing Escherichia coli are a leading cause of infections in hospital and community settings. Based on samples from two hospitals in Uganda and households of inpatients we tested the hypothesis that ESBL E. coli and/or their resistance determinants could spread within the healthcare and community settings through discharged patients that were still colonized. We used bacterial culture, susceptibility testing whole genome sequencing and detailed bioinformatics analysis to test the above hypothesis. Genome analysis revealed presence of predominantly blaCTX-M-15 and blaOXA-1 genes with a total resistome with genes belonging to 14 different classes of antimicrobials. Short-term cases of strain sharing were reported within each setting and strains from the two settings were found to cluster together based on their overall resistome. Long-term horizontal transfer of ESBL genes by various IncF and IncY types of plasmids shared between healthcare and community settings was demonstrated. Based on hybrid assembly, plasmid reconstruction and phylogenetic analyses, our study suggests that while the dissemination of AMR between healthcare and community settings in the short-term is possible at whole strain level, the long-term transmission between healthcare and communities is sustained by the transfer of plasmids circulating across niches and disseminating related resistomes.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , beta-Lactamasas/genética , Filogenia , Uganda/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Plásmidos/genética , Atención a la Salud
11.
Porcine Health Manag ; 9(1): 26, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264473

RESUMEN

BACKGROUND: Diagnosing and treatment of diseases in pigs are important to maintain animal welfare, food safety and productivity. At the same time antimicrobial resistance is increasing, and therefore, antibiotic treatment should be reserved for individuals with a bacterial infection. The aim of the study was to investigate gross and histological lesions and related pathogens in pigs that died during the nursery period in five Danish farms. In addition, high throughput, real-time qPCR monitoring of specific porcine pathogens in fecal sock and oral fluid samples were carried out to investigate the between-farm and between-batch variation in the occurrence of pathogens. RESULTS: Twenty-five batches of nursery pigs from five intensive, indoor herds were followed from weaning (approximately four weeks) to the end of nursery (seven to eight weeks post weaning). Gross and histological evaluation of 238 dead and 30 euthanized pigs showed the highest prevalence of lesions in the skin, respiratory system, gastrointestinal tract, and joints. Gross and histological diagnoses of lung and joint lesions agreed in 46.5% and 62.2% of selected pigs, respectively. Bacteriological detection of Escherichia coli, Streptococcus suis or Staphylococcus aureus infections in joints, lungs and livers was confirmed as genuine infection on immunohistochemical staining in 11 out of 70 tissue sections. The real-time qPCR analysis of pooled samples showed that most pathogens detected in feces and in oral fluid in general followed the same shedding patterns in consecutive batches within herds. CONCLUSIONS: Gross assessment should be supplemented with a histopathological assessment especially when diagnosing lesions in the lungs and joints. Moreover, microbiological detection of pathogens should optimally be followed up by in situ identification to confirm causality. Furthermore, routine necropsies can reveal gastric lesions that may warrant a change in management. Real-time qPCR testing of fecal sock samples and oral fluid samples may be used to monitor the infections in the individual herd and testing one batch seems to have a good predictive value for subsequent batches within a herd. Overall, optimal diagnostic protocols will provide a more substantiated prescription of antibiotics.

12.
Microbiol Spectr ; 11(3): e0078623, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191575

RESUMEN

The host-specific Salmonella serovar S. Pullorum (SP) modulates the chicken immune response to a Th2-biased response associated with persistent infection. This is different from the Th1-biased immune response induced by the genetically close serovar, S. Enteritidis (SE). Based on core genome differences between SP and SE, we used three complementary bioinformatics approaches to identify SP genes, which may be important for stimulation of the immune response. Defined mutants were constructed in selected genes, and the infection potential and ability of mutants to stimulate cytokine production in avian derived HD11 macrophages were determined. Deletion of large genomic regions unique to SP did not change infection potential nor immune stimulation significantly. Mutants in genes with conserved single nucleotide polymorphisms (SNPs) between the two serovars in the region 100 bp upstream of the start codon (conserved upstream SNPs [CuSNPs]) such as sseE, osmB, tolQ, a putative immune antigen, and a putative persistent infection factor, exhibited differences in induction of inflammatory cytokines compared to wild-type SP, suggesting a possible role of these CuSNPs in immune regulation. Single nucleotide SP mutants correcting for the CuSNP difference were constructed in the upstream region of sifA and pipA. The SNP corrected pipA mutant expressed pipA at a higher level than the wild-type SP strain, and the mutant differentially caused upregulation of proinflammatory cytokines. It suggests that this CuSNP is important for the suppression of proinflammatory responses. In conclusion, this study has identified putative immune stimulating factors of relevance to the difference in infection dynamics between SP and SE in avian macrophages. IMPORTANCE Salmonella Pullorum is host specific to avian species, where it causes life-threatening infection in young birds. It is unknown why it is host restricted and causes systemic disease, rather than gastroenteritis normally seen with Salmonella. In the present study, we identified genes and single nucleotide polymorphisms (SNPs; relative to the broad-host-range type Salmonella Enteritidis), which affected survival and immune induction in macrophages from hens suggesting a role in development of the host specific infection. Further studies of such genes may enable understanding of which genetic factors determine the development of host specific infection by S. Pullorum. In this study, we developed an in silico approach to predict candidate genes and SNPs for development of the host-specific infection and the specific induction of immunity associated with this infection. This study flow can be used in similar studies in other clades of bacteria.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella enterica , Animales , Femenino , Pollos/microbiología , Infección Persistente , Salmonella/genética , Macrófagos , Citocinas/genética , Factores Inmunológicos , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología , Salmonella enterica/genética
13.
Poult Sci ; 102(3): 102427, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36584420

RESUMEN

The presence of Salmonella in hatchlings is the single most important risk factor for the introduction of Salmonella into poultry farms, and resistant strains are particularly worrisome, as they could affect treatment outcomes in humans infected through consumption of contaminated poultry products. This study estimated Salmonella prevalence, determined resistance profiles of strains recovered from hatchlings in Nigeria, and determined genetic relatedness between hatchling strains and strains from poultry farms. In this study, 300 fecal samples were collected. Salmonella was isolated by culture and confirmed by PCR, and isolates were tested for susceptibility to antimicrobials by the disk diffusion method. Strains were pair-end sequenced, and genomes were used to obtain serotypes and antibiotic resistance genes. Whole-genome based phylogenetic analysis was used to determine genetic relatedness between these isolates and strains from previously characterized older chicken within the same geographical area. A prevalence of 10.7% was obtained belonging to 13 Salmonella serovars. Resistance to kanamycin (30/32), ciprofloxacin (22/32), nalidixic acid (22/32), and sulfonamides (22/32) were the most commonly observed phenotypic resistances. Twenty-two (68.8%) isolates showed multidrug resistance. In silico predictions identified 36 antimicrobial resistance genes. Four (12.5%) and 22 (68.8%) strains showed point mutations in gyrA and parC. Commonly observed acquired resistance genes included sul1, sul2, sul3, and tet(A) as well as a variety of aminoglycoside-modifying genes. Eleven (34.4%) isolates were predicted to have genes that confer resistance to fosfomycin (fosA7, fosB). A strain of S. Stanleyville was predicted to have optrA, which confers resistance to furazolidone. Strains of S. Kentucky, S. Muenster, and S. Menston obtained from hatchlings showed close genetic relatedness by having less than 30 SNPs difference to strains recovered from chickens at farms previously receiving hatchlings from the same sources.


Asunto(s)
Pollos , Salmonella enterica , Humanos , Animales , Filogenia , Prevalencia , Granjas , Nigeria/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana/veterinaria , Salmonella , Antibacterianos/farmacología , Aves de Corral
14.
Antibiotics (Basel) ; 11(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36551431

RESUMEN

Whole genome sequencing (WGS) is a powerful tool to analyze bacterial genomes rapidly, and can be useful to study and detect AMR genes. We carried out WGS on a group of Escherichia coli (n = 30), sampled from healthy animals and farm environment in four pigsties in northern Italy. Two × 250bp paired end sequencing strategy on Illumina MiSeq™ was used. We performed in silico characterization of E. coli isolates through the web tools provided by the Center for Genomic Epidemiology (cge.cbs.dtu.dk/services/) to study AMR and virulence genes. Bacterial strains were further analyzed to detect phenotypic antimicrobial susceptibility against several antimicrobials. Data obtained from WGS were compared to phenotypic results. All 30 strains were MDR, and they were positive for the genes blaCTX-M and blaTEM as verified by PCR. We observed a good concordance between phenotypic and genomic results. Different AMR determinants were identified (e.g., qnrS, sul, tet). Potential pathogenicity of these strains was also assessed, and virulence genes were detected (e.g., etsC, gad, hlyF, iroN, iss), mostly related to extraintestinal E. coli pathotypes (UPEC/APEC). However, enterotoxin genes, such as astA, ltcA and stb were also identified, indicating a possible hybrid pathogenic nature. Various replicons associated to plasmids, previously recovered in pathogenic bacteria, were identified (e.g., IncN and IncR plasmid), supporting the hypothesis that our strains were pathogenic. Eventually, through WGS it was possible to confirm the phenotypic antibiotic resistance results and to appreciate the virulence side of our ESBL-producing E. coli. These findings highlight the need to monitor commensal E. coli sampled from healthy pigs considering a One Health perspective.

15.
J Appl Microbiol ; 133(4): 2516-2527, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35858716

RESUMEN

AIMS: Diarrhoea is a common health problem in calves and a main reason for use of antimicrobials. It is associated with several bacterial, viral and parasitic pathogens, most of which are commonly present in healthy animals. Methods, which quantify the causative agents, may therefore improve confidence in associating a pathogen to the disease. This study evaluated a novel commercially available, multiplex quantitative polymerase chain reaction (qPCR) assay (Enterit4Calves) for detection and quantification of pathogens associated with calf-diarrhoea. METHODS AND RESULTS: Performance of the method was first evaluated under laboratory conditions. Then it was compared with current routine methods for detection of pathogens in faecal samples from 65 calves with diarrhoea and in 30 spiked faecal samples. The qPCR efficiencies were between 84%-103% and detection limits of 100-1000 copies of nucleic acids per sample were observed. Correct identification was obtained on 42 strains of cultured target bacteria, with only one false positive reaction from 135 nontarget bacteria. Kappa values for agreement between the novel assay and current routine methods varied between 0.38 and 0.83. CONCLUSION: The novel qPCR method showed good performance under laboratory conditions and a fair to good agreement with current routine methods when used for testing of field samples. SIGNIFICANCE AND IMPACT OF STUDY: In addition to having fair to good detection abilities, the novel qPCR method allowed quantification of pathogens. In the future, use of quantification may improve diagnosis and hence treatment of calf diarrhoea.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Ácidos Nucleicos , Animales , Bacterias/genética , Bovinos , Diarrea/diagnóstico , Diarrea/microbiología , Diarrea/veterinaria , Heces/microbiología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Sensibilidad y Especificidad
16.
Proteomes ; 10(2)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35645373

RESUMEN

Uropathogenic Escherichia coli (UPEC) are the most common cause of urinary tract infection (UTI). UPEC normally reside in the intestine, and during establishment of UTI, they undergo metabolic adaptations, first to urine and then upon tissue invasion to the bladder cell interior. To understand these adaptations, we used quantitative proteomic profiling to characterize protein expression of the UPEC strain UTI89 growing in human urine and when inside J82 bladder cells. In order to facilitate detection of UPEC proteins over the excess amount of eukaryotic proteins in bladder cells, we developed a method where proteins from UTI89 grown in MOPS and urine was spiked-in to enhance detection of bacterial proteins. More than 2000 E. coli proteins were detected. During growth in urine, proteins associated with iron acquisition and several amino acid uptake and biosynthesis systems, most prominently arginine metabolism, were significantly upregulated. During growth in J82 cells, proteins related to iron uptake and arginine metabolisms were likewise upregulated together with proteins involved in sulfur compound turnover. Ribosomal proteins were downregulated relative to growth in MOPS in this environment. There was no direct correlation between upregulated proteins and proteins reported to be essential for infections, showing that upregulation during growth does not signify that the proteins are essential for growth under a condition.

17.
Front Microbiol ; 13: 828013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633687

RESUMEN

Diarrhea is a major health problem in neonatal and young calves worldwide. It can be caused by a variety of infectious agents, including the bacteria Salmonella enterica serovar Dublin (S. Dublin), enterotoxigenic Escherichia coli (ETEC), and Clostridium perfringens. Preventive alternatives to antibiotic treatment should be identified. As a first step toward this, the aim of the current study was to examine whether cell-free supernatants from cow milk fermented by lactic acid bacteria affects virulence-gene expression in strains of S. Dublin, ETEC E. coli F5 and C. perfringens. pH-neutralized, cell-free, spent medium of milk (nCFSM) fermented by 61 different lactic acid bacteria (LAB) and non-LAB starter cultures belonging to 17 genera was assayed for their effect on expression of important virulence factors (S. Dublin hilA, ssrB, ssaG, flhD, prgI, fliC; ETEC E. coli F5 fanC, estA, fim41a; C. perfringens cpa), when the bacteria were grown in the nCFSM. Screening was done using either a promoter-reporter expression system or RT-qPCR. nCFSM from Bifidobacterium longum BL-15955 and Limosilactobacillus reuteri LR-33016 downregulated the expression of fanC, fim41a and estA genes in the four tested ETEC E. coli F5 strains without affecting their growth, while mainly B. longum BL-15955 downregulated expression of cpa in the four tested strains of C. perfringens. nCFSM from the mixed cultures; NU-TRISH® BY-Mild (Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Bifidobacterium BL-15954) and COMBO4 (Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus), as well as Lactobacillus helveticus CNRZ32 downregulated the tested virulence genes in the three tested strains of S. Dublin. To enable possible downregulation of the expression of virulence genes in all three target bacteria simultaneously, nCFSM was prepared from NU-TRISH® By-Mild in combination with B. longum BL-15955 (i.e. a four-strain combination). The nCFSM from this combination downregulated the virulence genes expression in all the three species. In the future, NU-TRISH® By-Mild and B. longum BL-15955 in combination could potentially be used for prevention of neonatal calf diarrhea caused by S. Dublin, E. coli F5, and C. perfringens, reducing the need for antimicrobial treatment, however, field studies are needed to prove that.

18.
Front Microbiol ; 13: 821679, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464965

RESUMEN

Salmonella is a major cause of food-borne infections in Europe, and the majority of human infections are caused by only a few serotypes, among them are Salmonella enterica subsp. enterica serotype Enteritidis (hereafter Salmonella Enteritidis), Salmonella Typhimurium, and the monophasic variant of S. Typhimurium. The reason for this is not fully understood, but could include virulence factors as well as increased ability to transfer via the external environment. Formation of biofilm is considered an adaptation strategy used by bacteria to overcome environmental stresses. In order to assess the capability of different Salmonella serotypes to produce biofilm and establish whether this is affected by pH and salinity, 88 Salmonella isolates collected from animal, food, and human sources and belonging to 15 serotypes, including those most frequently responsible for human infections, were tested. Strains were grown in tryptic soy broth (TSB), TSB with 4% NaCl pH 4.5, TSB with 10% NaCl pH 4.5, TSB with 4% NaCl pH 7, or TSB with 10% NaCl pH 7, and biofilm production was assessed after 24 h at 37°C using crystal violet staining. A linear mixed effect model was applied to compare results from the different experimental conditions. Among the tested serotypes, S. Dublin showed the greatest ability to form biofilm even at pH 4.5, which inhibited biofilm production in the other tested serotypes. Salmonella Senftenberg and the monophasic variant of S. Typhimurium showed the highest biofilm production in TSB with 10% NaCl pH 7. In general, pH had a high influence on the ability to form biofilm, and most of the tested strains were not able to produce biofilm at pH 4.5. In contrast, salinity only had a limited influence on biofilm production. In general, serotypes causing the highest number of human infections showed a limited ability to produce biofilm in the tested conditions, indicating that biofilm formation is not a crucial factor in the success of these clones.

19.
J Wildl Dis ; 58(2): 269-278, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35255126

RESUMEN

Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum ß-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.


Asunto(s)
Infecciones por Escherichia coli , Infecciones por Klebsiella , Animales , Antibacterianos/uso terapéutico , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Genómica , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/veterinaria , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana/veterinaria , Pan troglodytes , Uganda/epidemiología , beta-Lactamasas/genética
20.
J Antimicrob Chemother ; 77(3): 556-567, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34894259

RESUMEN

The emergence and spread of antimicrobial resistance (AMR) among pathogenic bacteria constitute an accelerating crisis for public health. The selective pressures caused by increased use and misuse of antimicrobials in medicine and livestock production have accelerated the overall selection of resistant bacteria. In addition, horizontal gene transfer (HGT) plays an important role in the spread of resistance genes, for example mobilizing reservoirs of AMR from commensal bacteria into pathogenic ones. Antimicrobials, besides antibacterial function, also result in undesirable effects in the microbial populations, including the stimulation of HGT. The main aim of this narrative review was to present an overview of the current knowledge of the impact of antimicrobials on HGT in bacteria, including the effects of transformation, transduction and conjugation, as well as other less well-studied mechanisms of HGT. It is widely accepted that conjugation plays a major role in the spread of AMR in bacteria, and the focus of this review is therefore mainly on the evidence provided that antimicrobial treatment affects this process. Other mechanisms of HGT have so far been deemed less important in this respect; however, recent discoveries suggest their role may be larger than previously thought, and the review provides an update on the rather limited knowledge currently available regarding the impact of antimicrobial treatment on these processes as well. A conclusion from the review is that there is an urgent need to investigate the mechanisms of antimicrobial-induced HGT, since this will be critical for developing new strategies to combat the spread of AMR.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias/genética , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...