Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115051

RESUMEN

BACKGROUND AND AIMS: Leaf variegation is common in plants and confers diverse adaptive functions. However, its genetic underpinnings remain largely unresolved; this is particularly true for variegation that arises through modified leaf tissue structure that affects light reflection. White clover is naturally polymorphic for structure-based white leaf mark variegation. It therefore provides a useful system to examine the genetic basis of this phenotype, and to assess potential costs to photosynthetic efficiency resulting from modified leaf structures. This study sought to map the loci controlling the white leaf mark in white clover and evaluate the relationship between white leaf mark, leaf thickness, and photosynthetic efficiency. METHODS: We generated a high-density genetic linkage map from an F3 mapping population, employing reference genome-based SNP markers. White leaf mark was quantified through detailed phenotypic evaluations alongside leaf thickness to test how tissue thickness may affect the variegation phenotype. Quantitative trait locus (QTL) mapping was performed to characterize their genetic bases. Photosynthetic efficiency measurements were used to test for physiological trade-offs between variegation and photosynthetic output. KEY RESULTS: The V locus, a major gene responsible for the white leaf mark polymorphism, was mapped to the distal end of chromosome 5, and several modifier loci were also mapped that contribute additively to variegation intensity. The presence and intensity of white leaf mark was associated with greater leaf thickness; however, increased variegation did not detectably affect photosynthetic efficiency. CONCLUSIONS: We have successfully mapped the major locus governing the white leaf mark in white clover, along with several modifier loci, revealing a complex basis for this structure-based variegation. The apparent absence of compromised photosynthesis in variegated leaves challenges the notion that variegation creates fitness trade-offs between photosynthetic efficiency and other adaptive functions. This finding suggests that other factors may maintain the white leaf mark polymorphism in white clover.

3.
BMC Biol ; 22(1): 165, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113037

RESUMEN

BACKGROUND: White clover (Trifolium repens) is a globally important perennial forage legume. This species also serves as an eco-evolutionary model system for studying within-species chemical defense variation; it features a well-studied polymorphism for cyanogenesis (HCN release following tissue damage), with higher frequencies of cyanogenic plants favored in warmer locations worldwide. Using a newly generated haplotype-resolved genome and two other long-read assemblies, we tested the hypothesis that copy number variants (CNVs) at cyanogenesis genes play a role in the ability of white clover to rapidly adapt to local environments. We also examined questions on subgenome evolution in this recently evolved allotetraploid species and on chromosomal rearrangements in the broader IRLC legume clade. RESULTS: Integration of PacBio HiFi, Omni-C, Illumina, and linkage map data yielded a completely de novo genome assembly for white clover (created without a priori sequence assignment to subgenomes). We find that white clover has undergone extensive transposon diversification since its origin but otherwise shows highly conserved genome organization and composition with its diploid progenitors. Unlike some other clover species, its chromosomal structure is conserved with other IRLC legumes. We further find extensive evidence of CNVs at the major cyanogenesis loci; these contribute to quantitative variation in the cyanogenic phenotype and to local adaptation across wild North American populations. CONCLUSIONS: This work provides a case study documenting the role of CNVs in local adaptation in a plant species, and it highlights the value of pan-genome data for identifying contributions of structural variants to adaptation in nature.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Planta , Trifolium , Adaptación Fisiológica/genética , Trifolium/genética
4.
New Phytol ; 243(6): 2486-2500, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049577

RESUMEN

Changes to flowering phenology are a key response of plants to climate change. However, we know little about how these changes alter temporal patterns of reproductive overlap (i.e. phenological reassembly). We combined long-term field (1937-2012) and herbarium records (1850-2017) of 68 species in a flowering plant community in central North America and used a novel application of Bayesian quantile regression to estimate changes to flowering season length, altered richness and composition of co-flowering assemblages, and whether phenological shifts exhibit seasonal trends. Across the past century, phenological shifts increased species' flowering durations by 11.5 d on average, which resulted in 94% of species experiencing greater flowering overlap at the community level. Increases to co-flowering were particularly pronounced in autumn, driven by a greater tendency of late season species to shift the ending of flowering later and to increase flowering duration. Our results demonstrate that species-level phenological shifts can result in considerable phenological reassembly and highlight changes to flowering duration as a prominent, yet underappreciated, effect of climate change. The emergence of an autumn co-flowering mode emphasizes that these effects may be season-dependent.


Asunto(s)
Cambio Climático , Flores , Estaciones del Año , Flores/fisiología , Biodiversidad , Factores de Tiempo , Especificidad de la Especie , Reproducción/fisiología , Teorema de Bayes
5.
Mol Ecol ; 33(17): e17484, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39072878

RESUMEN

Species that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines. White clover is naturally polymorphic for its chemical defence cyanogenesis (HCN release with tissue damage); climate-associated cyanogenesis clines have evolved throughout its native and introduced range worldwide. We performed landscape genomic analyses on 415 wild genotypes from 43 locations spanning much of the North American species range to assess the relative importance of cyanogenesis loci vs. other genomic factors in local climatic adaptation. We find clear evidence of local adaptation, with temperature-related climatic variables best describing genome-wide differentiation between sampling locations. The same climatic variables are also strongly correlated with cyanogenesis frequencies and gene copy number variations (CNVs) at cyanogenesis loci. However, landscape genomic analyses indicate no significant contribution of cyanogenesis loci to local adaptation. Instead, several genomic regions containing promising candidate genes for plant response to seasonal cues are identified - some of which are shared with previously identified QTLs for locally adaptive fitness traits in North American white clover. Our findings suggest that local adaptation in white clover is likely determined primarily by genes controlling the timing of growth and flowering in response to local seasonal cues. More generally, this work suggests that caution is warranted when considering the importance of conspicuous phenotypic clines as primary determinants of local adaptation.


Asunto(s)
Genotipo , Fenotipo , Temperatura , Trifolium , Trifolium/genética , Trifolium/crecimiento & desarrollo , Adaptación Fisiológica/genética , América del Norte , Variaciones en el Número de Copia de ADN , Genética de Población , Clima , Cianuro de Hidrógeno/metabolismo , Blanco
6.
Brief Funct Genomics ; 23(3): 193-213, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751352

RESUMEN

Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.


Asunto(s)
Productos Agrícolas , Almidón Sintasa , Amilopectina/metabolismo , Amilopectina/genética , Amilosa/metabolismo , Amilosa/genética , Productos Agrícolas/genética , Genotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Almidón/genética , Almidón/biosíntesis , Almidón Sintasa/genética , Almidón Sintasa/metabolismo
8.
Nat Commun ; 15(1): 1182, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383554

RESUMEN

High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative.


Asunto(s)
Variación Genética , Oryza , Evolución Molecular , Porosidad , Fitomejoramiento , Asia Sudoriental , Malezas/genética , Oryza/genética
9.
Plant J ; 117(1): 177-192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37797086

RESUMEN

'Living fossils', that is, ancient lineages of low taxonomic diversity, represent an exceptional evolutionary heritage, yet we know little about how demographic history and deleterious mutation load have affected their long-term survival and extinction risk. We performed whole-genome sequencing and population genomic analyses on Dipteronia sinensis and D. dyeriana, two East Asian Tertiary relict trees. We found large-scale genome reorganizations and identified species-specific genes under positive selection that are likely involved in adaptation. Our demographic analyses suggest that the wider-ranged D. sinensis repeatedly recovered from population bottlenecks over late Tertiary/Quaternary periods of adverse climate conditions, while the population size of the narrow-ranged D. dyeriana steadily decreased since the late Miocene, especially after the Last Glacial Maximum (LGM). We conclude that the efficient purging of deleterious mutations in D. sinensis facilitated its survival and repeated demographic recovery. By contrast, in D. dyeriana, increased genetic drift and reduced selection efficacy, due to recent severe population bottlenecks and a likely preponderance of vegetative propagation, resulted in fixation of strongly deleterious mutations, reduced fitness, and continuous population decline, with likely detrimental consequences for the species' future viability and adaptive potential. Overall, our findings highlight the significant impact of demographic history on levels of accumulation and purging of putatively deleterious mutations that likely determine the long-term survival and extinction risk of Tertiary relict trees.


Asunto(s)
Fósiles , Endogamia , Árboles , Animales , Variación Genética , Metagenómica , Mutación , Árboles/genética
10.
Plants (Basel) ; 12(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960027

RESUMEN

The commercial cultivation of herbicide-resistant (HR) transgenic soybeans (Glycine max L. Merr.) raises great concern that transgenes may introgress into wild soybeans (Glycine soja Sieb. et Zucc.) via pollen-mediated gene flow, which could increase the ecological risks of transgenic weed populations and threaten the genetic diversity of wild soybean. To assess the fitness of hybrids derived from transgenic HR soybean and wild soybean, the F2 and F3 descendants of crosses of the HR soybean line T14R1251-70 and two wild soybeans (LNTL and JLBC, which were collected from LiaoNing TieLing and JiLin BaiCheng, respectively), were planted along with their parents in wasteland or farmland soil, with or without weed competition. The fitness of F2 and F3 was significantly increased compared to the wild soybeans under all test conditions, and they also showed a greater competitive ability against weeds. Seeds produced by F2 and F3 were superficially similar to wild soybeans in having a hard seed coat; however, closer morphological examination revealed that the hard-seededness was lower due to the seed coat structure, specifically the presence of thicker hourglass cells in seed coat layers and lower Ca content in palisade epidermis. Hybrid descendants containing the cp4-epsps HR allele were able to complete their life cycle and produce a large number of seeds in the test conditions, which suggests that they would be able to survive in the soil beyond a single growing season, germinate, and grow under suitable conditions. Our findings indicate that the hybrid descendants of HR soybean and wild soybean may pose potential ecological risks in regions of soybean cultivation where wild soybean occurs.

11.
Am J Bot ; 110(10): e16233, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661820

RESUMEN

PREMISE: ß-Cyanoalanine synthase (ß-CAS) and alternative oxidase (AOX) play important roles in the ability of plants to detoxify and tolerate hydrogen cyanide (HCN). These functions are critical for all plants because HCN is produced at low levels during basic metabolic processes, and especially for cyanogenic species, which release high levels of HCN following tissue damage. However, expression of ß-CAS and Aox genes has not been examined in cyanogenic species, nor compared between cyanogenic and acyanogenic genotypes within a species. METHODS: We used a natural polymorphism for cyanogenesis in white clover to examine ß-CAS and Aox gene expression in relation to cyanogenesis-associated HCN exposure. We identified all ß-CAS and Aox gene copies present in the genome, including members of the Aox1, Aox2a, and Aox2d subfamilies previously reported in legumes. Expression levels were compared between cyanogenic and acyanogenic genotypes and between damaged and undamaged leaf tissue. RESULTS: ß-CAS and Aox2a expression was differentially elevated in cyanogenic genotypes, and tissue damage was not required to induce this increased expression. Aox2d, in contrast, appeared to be upregulated as a generalized wounding response. CONCLUSIONS: These findings suggest a heightened constitutive role for HCN detoxification (via elevated ß-CAS expression) and HCN-toxicity mitigation (via elevated Aox2a expression) in plants that are capable of cyanogenesis. As such, freezing-induced cyanide autotoxicity is unlikely to be the primary selective factor in the evolution of climate-associated cyanogenesis clines.


Asunto(s)
Cianuros , Trifolium , Trifolium/genética , Cianuro de Hidrógeno/metabolismo , Nitrilos
12.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542471

RESUMEN

White clover (Trifolium repens L.; Fabaceae) is an important forage and cover crop in agricultural pastures around the world and is increasingly used in evolutionary ecology and genetics to understand the genetic basis of adaptation. Historically, improvements in white clover breeding practices and assessments of genetic variation in nature have been hampered by a lack of high-quality genomic resources for this species, owing in part to its high heterozygosity and allotetraploid hybrid origin. Here, we use PacBio HiFi and chromosome conformation capture (Omni-C) technologies to generate a chromosome-level, haplotype-resolved genome assembly for white clover totaling 998 Mbp (scaffold N50 = 59.3 Mbp) and 1 Gbp (scaffold N50 = 58.6 Mbp) for haplotypes 1 and 2, respectively, with each haplotype arranged into 16 chromosomes (8 per subgenome). We additionally provide a functionally annotated haploid mapping assembly (968 Mbp, scaffold N50 = 59.9 Mbp), which drastically improves on the existing reference assembly in both contiguity and assembly accuracy. We annotated 78,174 protein-coding genes, resulting in protein BUSCO completeness scores of 99.6% and 99.3% against the embryophyta_odb10 and fabales_odb10 lineage datasets, respectively.


Asunto(s)
Trifolium , Trifolium/genética , Haplotipos , Fitomejoramiento , Medicago/genética , Cromosomas
13.
J Hered ; 114(3): 259-270, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37002622

RESUMEN

Hibiscus liliiflorus, endemic to the Indian Ocean island of Rodrigues, is one of the rarest plant species in the world; only 2 wild individuals remain. Previously, when 4 wild individuals remained, the Mauritian Wildlife Foundation (MWF) in Rodrigues propagated cuttings of them in their nursery, then planted seedlings produced in the nursery into 3 outplanted populations on the island. Our goals were to: 1) assess whether all 4 original wild genotypes are represented in the MWF nursery; 2) determine whether ex situ living collections at international botanical gardens maintain unique genotypes of H. liliiflorus; 3) assess whether nursery individuals have crossed or self-fertilized to produce seed and quantify their relative contributions to outplanted populations; and 4) provide recommendations for future conservation actions. We used a 2b-RADseq approach to produce 2,711 genome-wide single nucleotide polymorphisms (SNPs) from 98 samples. Genotype identity analysis, principal component analysis, and model-based clustering in STRUCTURE found 4 genotypes extant in Rodrigues but no unique genotypes in ex situ botanic garden collections. Only 3 genotypes are represented in the MWF nursery; the one remaining genotype is represented by an extant wild individual. Parentage analysis showed that seeds produced in the MWF nursery resulted from both self-fertilization and crossing between genotypes, a result supported by internal relatedness and hybrid index calculations. Each outplanted population is dominated by a subset of parental genotypes, and we propose actions to balance the parental contributions to outplanted populations. Our study highlights how genetic assessments of ex situ conservation projects help conserve critically endangered species.


Asunto(s)
Conservación de los Recursos Naturales , Hibiscus , Humanos , Animales , Hibiscus/genética , Especies en Peligro de Extinción , Plantas , Genotipo
15.
BMC Biol ; 21(1): 20, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726089

RESUMEN

BACKGROUND: DNA mutations of diverse types provide the raw material required for phenotypic variation and evolution. In the case of crop species, previous research aimed to elucidate the changing patterns of repetitive sequences, single-nucleotide polymorphisms (SNPs), and small InDels during domestication to explain morphological evolution and adaptation to different environments. Additionally, structural variations (SVs) encompassing larger stretches of DNA are more likely to alter gene expression levels leading to phenotypic variation affecting plant phenotypes and stress resistance. Previous studies on SVs in rice were hampered by reliance on short-read sequencing limiting the quantity and quality of SV identification, while SV data are currently only available for cultivated rice, with wild rice largely uncharacterized. Here, we generated two genome assemblies for O. rufipogon using long-read sequencing and provide insights on the evolutionary pattern and effect of SVs on morphological traits during rice domestication. RESULTS: In this study, we identified 318,589 SVs in cultivated and wild rice populations through a comprehensive analysis of 13 high-quality rice genomes and found that wild rice genomes contain 49% of unique SVs and an average of 1.76% of genes were lost during rice domestication. These SVs were further genotyped for 649 rice accessions, their evolutionary pattern during rice domestication and potential association with the diversity of important agronomic traits were examined. Genome-wide association studies between these SVs and nine agronomic traits identified 413 candidate causal variants, which together affect 361 genes. An 824-bp deletion in japonica rice, which encodes a serine carboxypeptidase family protein, is shown to be associated with grain length. CONCLUSIONS: We provide relatively accurate and complete SV datasets for cultivated and wild rice accessions, especially in TE-rich regions, by comparing long-read sequencing data for 13 representative varieties. The integrated rice SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in rice.


Asunto(s)
Domesticación , Oryza , Genoma de Planta , Oryza/genética , Estudio de Asociación del Genoma Completo , Variación Genética , Fitomejoramiento , Fenotipo
16.
J Exp Bot ; 74(5): 1403-1419, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36478231

RESUMEN

Weedy rice (Oryza spp.), one of the most notorious weeds of cultivated rice, evades eradication through stem lodging and seed shattering. Many studies have focused on seed shattering, whereas variations in lodging have received less attention and the underlying mechanisms that cause the differences in lodging between weedy and cultivated rice have not been studied in detail. Here, we compared lodging variation among diverse Chinese weedy rice strains and between weedy rice and co-occurring cultivated rice. The chemical composition of basal stems was determined, and transcriptome and methylome sequencing were used to assess the variation in expression of lodging-related genes. The results showed that the degree of lodging varied between indica-derived weed strains with high lodging levels, which occurred predominantly in southern China, and japonica-derived strains with lower lodging levels, which were found primarily in the north. The more lodging-prone indica weedy rice had a smaller bending stress and lower lignin content than non-lodging accessions. In comparison to co-occurring cultivated rice, there was a lower ratio of cellulose to lignin content in the lodging-prone weedy rice. Variation in DNA methylation of lignin synthesis-related OsSWN1, OsMYBX9, OsPAL1, and Os4CL3 mediated the differences in their expression levels and affected the ratio of cellulose to lignin content. Taken together, our results show that DNA methylation in lignin-related genes regulates variations in stem strength and lodging in weedy rice, and between weed strains and co-occurring cultivated rice.


Asunto(s)
Oryza , Oryza/genética , Fenotipo , Lignina , Genes de Plantas , Celulosa , Variación Genética
17.
Science ; 378(6624): 1053-1054, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36480609

RESUMEN

Rapid weed evolution is exposed by genome sequencing of natural history collections.

18.
Commun Biol ; 5(1): 885, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076028

RESUMEN

Weedy rice is a close relative of cultivated rice that devastates rice productivity worldwide. In the southern United States, two distinct strains have been historically predominant, but the 21st century introduction of hybrid rice and herbicide resistant rice technologies has dramatically altered the weedy rice selective landscape. Here, we use whole-genome sequences of 48 contemporary weedy rice accessions to investigate the genomic consequences of crop-weed hybridization and selection for herbicide resistance. We find that population dynamics have shifted such that most contemporary weeds are now crop-weed hybrid derivatives, and that their genomes have subsequently evolved to be more like their weedy ancestors. Haplotype analysis reveals extensive adaptive introgression of cultivated alleles at the resistance gene ALS, but also uncovers evidence for convergent molecular evolution in accessions with no signs of hybrid origin. The results of this study suggest a new era of weedy rice evolution in the United States.


Asunto(s)
Oryza , Productos Agrícolas/genética , Variación Genética , Genómica , Oryza/genética , Fenotipo , Malezas/genética , Análisis de Secuencia de ADN , Estados Unidos
19.
Cell Res ; 32(10): 867-868, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35821091
20.
Am J Bot ; 109(7): 1085-1096, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35699252

RESUMEN

PREMISE: Although the balance between cross- and self-fertilization is driven by the environment, no long-term study has documented whether anthropogenic climate change is affecting reproductive strategy allocation in species with mixed mating systems. Here, we test whether the common blue violet (Viola sororia; Violaceae) has altered relative allocation to the production of potentially outcrossing flowers as the climate has changed throughout the 20th century. METHODS: Using herbarium records spanning from 1875 to 2015 from the central United States, we quantified production of obligately selfing cleistogamous (CL) flowers and potentially outcrossing chasmogamous (CH) flowers by V. sororia, coupled these records with historic temperature and precipitation data, and tested whether changes to the proportion of CL flowers correlate with temporal climate trends. RESULTS: We find that V. sororia progressively produced lower proportions of CL flowers across the past century and in environments with lower mean annual temperature and higher total annual precipitation. We also find that both CL and CH flower phenology has advanced across this time period. CONCLUSIONS: Our results suggest that V. sororia has responded to lower temperatures and greater water availability by shifting reproductive strategy allocation away from selfing and toward potential outcrossing. This provides the first long-term study of how climate change may affect relative allocation to potential outcrossing in species with mixed mating systems. By revealing that CL flowering is associated with low water availability and high temperature, our results suggest the production of obligately selfing flowers is favored in water limited environments.


Asunto(s)
Cambio Climático , Polinización , Flores , Reproducción , Autofecundación , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...