Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 31(3): 477-486.e7, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38518746

RESUMEN

Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.


Asunto(s)
Proteínas de la Cápside , VIH-1 , Proteínas de la Cápside/metabolismo , Cápside/química , Cápside/metabolismo , Ensamble de Virus , Replicación Viral , Antivirales/farmacología
2.
J Comput Aided Mol Des ; 36(3): 193-203, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35262811

RESUMEN

We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between - 6 and - 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/farmacología , Simulación del Acoplamiento Molecular , Unión Proteica , Solventes , Flujo de Trabajo
3.
QRB Discov ; 3: e11, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37529283

RESUMEN

Models of insulin secretory vesicles from pancreatic beta cells have been created using the cellPACK suite of tools to research, curate, construct and visualise the current state of knowledge. The model integrates experimental information from proteomics, structural biology, cryoelectron microscopy and X-ray tomography, and is used to generate models of mature and immature vesicles. A new method was developed to generate a confidence score that reconciles inconsistencies between three available proteomes using expert annotations of cellular localisation. The models are used to simulate soft X-ray tomograms, allowing quantification of features that are observed in experimental tomograms, and in turn, allowing interpretation of X-ray tomograms at the molecular level.

4.
J Mol Biol ; 434(2): 167351, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34774566

RESUMEN

Building structural models of entire cells has been a long-standing cross-discipline challenge for the research community, as it requires an unprecedented level of integration between multiple sources of biological data and enhanced methods for computational modeling and visualization. Here, we present the first 3D structural models of an entire Mycoplasma genitalium (MG) cell, built using the CellPACK suite of computational modeling tools. Our model recapitulates the data described in recent whole-cell system biology simulations and provides a structural representation for all MG proteins, DNA and RNA molecules, obtained by combining experimental and homology-modeled structures and lattice-based models of the genome. We establish a framework for gathering, curating and evaluating these structures, exposing current weaknesses of modeling methods and the boundaries of MG structural knowledge, and visualization methods to explore functional characteristics of the genome and proteome. We compare two approaches for data gathering, a manually-curated workflow and an automated workflow that uses homologous structures, both of which are appropriate for the analysis of mesoscale properties such as crowding and volume occupancy. Analysis of model quality provides estimates of the regularization that will be required when these models are used as starting points for atomic molecular dynamics simulations.


Asunto(s)
Modelos Estructurales , Mycoplasma/química , Bacterias , Biología Computacional , Genoma Bacteriano , Simulación de Dinámica Molecular , Mycoplasma/genética , Mycoplasma genitalium , Proteoma/genética , Transcriptoma
5.
Front Bioinform ; 12021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34790910

RESUMEN

CellPAINT is an interactive digital tool that allows non-expert users to create illustrations of the molecular structure of cells and viruses. We present a new release with several key enhancements, including the ability to generate custom ingredients from structure information in the Protein Data Bank, and interaction, grouping, and locking functions that streamline the creation of assemblies and illustration of large, complex scenes. An example of CellPAINT as a tool for hypothesis generation in the interpretation of cryoelectron tomograms is presented. CellPAINT is freely available at http://ccsb.scripps.edu/cellpaint.

6.
J Biol Chem ; 296: 100554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744290

RESUMEN

The structural study of icosahedral viruses has a long and impactful history in both crystallographic methodology and molecular biology. The evolution of the Protein Data Bank has paralleled and supported these studies providing readily accessible formats dealing with novel features associated with viral particle symmetries and subunit interactions. This overview describes the growth in size and complexity of icosahedral viruses from the first early studies of small RNA plant viruses and human picornaviruses up to the larger and more complex bacterial phage, insect, and human disease viruses such as Zika, hepatitis B, Adeno and Polyoma virus. The analysis of icosahedral viral capsid protein domain folds has shown striking similarities, with the beta jelly roll motif observed across multiple evolutionarily divergent species. The icosahedral symmetry of viruses drove the development of noncrystallographic symmetry averaging as a powerful phasing method, and the constraints of maintaining this symmetry resulted in the concept of quasi-equivalence in viral structures. Symmetry also played an important early role in demonstrating the power of cryo-electron microscopy as an alternative to crystallography in generating atomic resolution structures of these viruses. The Protein Data Bank has been a critical resource for assembling and disseminating these structures to a wide community, and the virus particle explorer (VIPER) was developed to enable users to easily generate and view complete viral capsid structures from their asymmetric building blocks. Finally, we share a personal perspective on the early use of computer graphics to communicate the intricacies, interactions, and beauty of these virus structures.


Asunto(s)
Bases de Datos de Proteínas , Virión/química , Virus/química , Gráficos por Computador , Virus/genética
7.
Protein Sci ; 30(1): 31-43, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32808340

RESUMEN

The AutoDock suite provides a comprehensive toolset for computational ligand docking and drug design and development. The suite builds on 30 years of methods development, including empirical free energy force fields, docking engines, methods for site prediction, and interactive tools for visualization and analysis. Specialized tools are available for challenging systems, including covalent inhibitors, peptides, compounds with macrocycles, systems where ordered hydration plays a key role, and systems with substantial receptor flexibility. All methods in the AutoDock suite are freely available for use and reuse, which has engendered the continued growth of a diverse community of primary users and third-party developers.


Asunto(s)
Diseño de Fármacos , Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas/química , Programas Informáticos
8.
Trends Biochem Sci ; 45(6): 472-483, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32413324

RESUMEN

Experimental information from microscopy, structural biology, and bioinformatics may be integrated to build structural models of entire cells with molecular detail. This integrative modeling is challenging in several ways: the intrinsic complexity of biology results in models with many closely packed and heterogeneous components; the wealth of available experimental data is scattered among multiple resources and must be gathered, reconciled, and curated; and computational infrastructure is only now gaining the capability of modeling and visualizing systems of this complexity. We present recent efforts to address these challenges, both with artistic approaches to depicting the cellular mesoscale, and development and application of methods to build quantitative models.


Asunto(s)
Biología Celular , Biología Computacional , Descubrimiento de Drogas , Estructura Molecular
9.
ACS Infect Dis ; 5(12): 2148-2163, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31625383

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), kills 1.6 million people annually. To bridge the gap between structure- and cell-based drug discovery strategies, we are pioneering a computer-aided discovery paradigm that merges structure-based virtual screening with ligand-based, machine learning methods trained with cell-based data. This approach successfully identified N-(3-methoxyphenyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (JSF-2164) as an inhibitor of purified InhA with whole-cell efficacy versus in vitro cultured M. tuberculosis. When the intrabacterial drug metabolism (IBDM) platform was leveraged, mechanistic studies demonstrated that JSF-2164 underwent a rapid F420H2-dependent biotransformation within M. tuberculosis to afford intrabacterial nitric oxide and two amines, identified as JSF-3616 and JSF-3617. Thus, metabolism of JSF-2164 obscured the InhA inhibition phenotype within cultured M. tuberculosis. This study demonstrates a new docking/Bayesian computational strategy to combine cell- and target-based drug screening and the need to probe intrabacterial metabolism when clarifying the antitubercular mechanism of action.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Oxadiazoles/farmacología , Oxidorreductasas/antagonistas & inhibidores , Aminas/metabolismo , Sitios de Unión , Ensayos Analíticos de Alto Rendimiento , Ligandos , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Oxadiazoles/química , Conformación Proteica
10.
Structure ; 27(11): 1716-1720.e1, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31519398

RESUMEN

The small program Illustrate generates non-photorealistic images of biological molecules for use in dissemination, outreach, and education. The method has been used as part of the "Molecule of the Month," an ongoing educational column at the RCSB Protein Data Bank (http://rcsb.org). Insights from 20 years of application of the program are presented, and the program has been released both as open-source Fortran at GitHub and through an interactive web-based interface.


Asunto(s)
Gráficos por Computador , Ilustración Médica , Programas Informáticos , Biología Molecular/educación , Biología Molecular/métodos , Conformación Proteica
11.
PLoS Comput Biol ; 15(6): e1007150, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31194731

RESUMEN

A coarse-grain computational method integrates biophysical and structural data to generate models of HIV-1 genomic RNA, nucleocapsid and integrase condensed into a mature ribonucleoprotein complex. Several hypotheses for the initial structure of the genomic RNA and oligomeric state of integrase are tested. In these models, integrase interaction captures features of the relative distribution of gRNA in the immature virion and increases the size of the RNP globule, and exclusion of nucleocapsid from regions with RNA secondary structure drives an asymmetric placement of the dimerized 5'UTR at the surface of the RNP globule.


Asunto(s)
VIH-1 , ARN Viral , Ribonucleoproteínas , Proteínas Virales , Biología Computacional , VIH-1/química , VIH-1/metabolismo , Simulación de Dinámica Molecular , ARN Viral/química , ARN Viral/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Virión , Ensamble de Virus
12.
mBio ; 10(2)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862755

RESUMEN

HIV-1 capsid protein (CA) plays critical roles in both early and late stages of the viral replication cycle. Mutagenesis and structural experiments have revealed that capsid core stability significantly affects uncoating and initiation of reverse transcription in host cells. This has led to efforts in developing antivirals targeting CA and its assembly, although none of the currently identified compounds are used in the clinic for treatment of HIV infection. A specific interaction that is primarily present in pentameric interfaces in the HIV-1 capsid core was identified and is reported to be important for CA assembly. This is shown by multidisciplinary characterization of CA site-directed mutants using biochemical analysis of virus-like particle formation, transmission electron microscopy of in vitro assembly, crystallographic studies, and molecular dynamic simulations. The data are consistent with a model where a hydrogen bond between CA residues E28 and K30' from neighboring N-terminal domains (CANTDs) is important for CA pentamer interactions during core assembly. This pentamer-preferred interaction forms part of an N-terminal domain interface (NDI) pocket that is amenable to antiviral targeting.IMPORTANCE Precise assembly and disassembly of the HIV-1 capsid core are key to the success of viral replication. The forces that govern capsid core formation and dissociation involve intricate interactions between pentamers and hexamers formed by HIV-1 CA. We identified one particular interaction between E28 of one CA and K30' of the adjacent CA that appears more frequently in pentamers than in hexamers and that is important for capsid assembly. Targeting the corresponding site could lead to the development of antivirals which disrupt this interaction and affect capsid assembly.


Asunto(s)
Proteína p24 del Núcleo del VIH/metabolismo , VIH-1/fisiología , Multimerización de Proteína , Ensamble de Virus , Cápside/metabolismo , Cápside/ultraestructura , Cristalografía por Rayos X , Análisis Mutacional de ADN , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Unión Proteica , Mapeo de Interacción de Proteínas
13.
J Chem Inf Model ; 59(4): 1382-1397, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30758197

RESUMEN

To perform massive-scale replica exchange molecular dynamics (REMD) simulations for calculating binding free energies of protein-ligand complexes, we implemented the asynchronous replica exchange (AsyncRE) framework of the binding energy distribution analysis method (BEDAM) in implicit solvent on the IBM World Community Grid (WCG) and optimized the simulation parameters to reduce the overhead and improve the prediction power of the WCG AsyncRE simulations. We also performed the first massive-scale binding free energy calculations using the WCG distributed computing grid and 301 ligands from the SAMPL4 challenge for large-scale binding free energy predictions of HIV-1 integrase complexes. In total there are ∼10000 simulated complexes, ∼1 million replicas, and ∼2000 µs of aggregated MD simulations. Running AsyncRE MD simulations on the WCG requires accepting a trade-off between the number of replicas that can be run (breadth) and the number of full RE cycles that can be completed per replica (depth). As compared with synchronous Replica Exchange (SyncRE) running on tightly coupled clusters like XSEDE, on the WCG many more replicas can be launched simultaneously on heterogeneous distributed hardware, but each full RE cycle requires more overhead. We compared the WCG results with that from AutoDock and more advanced RE simulations including the use of flattening potentials to accelerate sampling of selected degrees of freedom of ligands and/or receptors related to slow dynamics due to high energy barriers. We propose a suitable strategy of RE simulations to refine high throughput docking results which can be matched to corresponding computing resources: from HPC clusters, to small or medium-size distributed campus grids, and finally to massive-scale computing networks including millions of CPUs like the resources available on the WCG.


Asunto(s)
Redes de Comunicación de Computadores , Integrasa de VIH/metabolismo , Modelos Moleculares , Integrasa de VIH/química , Ligandos , Unión Proteica , Conformación Proteica , Termodinámica
14.
J Mol Biol ; 430(21): 3997-4012, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30009769

RESUMEN

Visualization has been a key technology in the progress of structural molecular biology for as long as the field has existed. This perspective describes the nature of the visualization process in structural studies, how it has evolved over the years, and its relationship to the changes in technology that have supported and driven it. It focuses on how technical advances have changed the way we look at and interact with molecular structure, and how structural biology has fostered and challenged that technology.


Asunto(s)
Modelos Moleculares , Estructura Molecular , Programas Informáticos , Humanos , Conformación Molecular , Conformación Proteica , Proteínas/química
15.
J Phys Chem B ; 122(21): 5441-5447, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29338247

RESUMEN

Mesoscale molecular modeling is providing a new window into the inner workings of living cells. Modeling of genomes, however, remains a technical challenge, due to their large size and complexity. We describe a lattice method for rapid generation of bacterial nucleoid models that integrates experimental data from a variety of biophysical techniques and provides a starting point for simulation and hypothesis generation. The current method builds models of a circular bacterial genome with supercoiled plectonemes, packed within the small space of the bacterial cell. Lattice models are generated for Mycoplasma genitalium and Escherichia coli nucleoids, and used to simulate interaction data. The method is rapid enough to allow generation of multiple models when analyzing structure/function relationships, and we demonstrate use of the lattice models in creation of an all-atom representation of an entire cell.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano , Modelos Moleculares , Mycoplasma genitalium/genética , ADN Bacteriano/química
16.
IEEE Comput Graph Appl ; 38(6): 51-66, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30668455

RESUMEN

CellPAINT allows nonexpert users to create interactive mesoscale illustrations that integrate a variety of biological data. Like popular digital painting software, scenes are created using a palette of molecular "brushes." The current release allows creation of animated scenes with an HIV virion, blood plasma, and a simplified T-cell.


Asunto(s)
Gráficos por Computador , Técnicas Citológicas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Animales , Células Cultivadas , Humanos , Internet , Ratones , Microscopía Electrónica
17.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28446665

RESUMEN

HIV-1 is rare among viruses for having a low number of envelope glycoprotein (Env) spikes per virion, i.e., ∼7 to 14. This exceptional feature has been associated with avoidance of humoral immunity, i.e., B cell activation and antibody neutralization. Virus-like particles (VLPs) with increased density of Env are being pursued for vaccine development; however, these typically require protein engineering that alters Env structure. Here, we used instead a strategy that targets the producer cell. We employed fluorescence-activated cell sorting (FACS) to sort for cells that are recognized by trimer cross-reactive broadly neutralizing antibody (bnAb) and not by nonneutralizing antibodies. Following multiple iterations of FACS, cells and progeny virions were shown to display higher levels of antigenically correct Env in a manner that correlated between cells and cognate virions (P = 0.027). High-Env VLPs, or hVLPs, were shown to be monodisperse and to display more than a 10-fold increase in spikes per particle by electron microscopy (average, 127 spikes; range, 90 to 214 spikes). Sequencing revealed a partial truncation in the C-terminal tail of Env that had emerged in the sort; however, iterative rounds of "cell factory" selection were required for the high-Env phenotype. hVLPs showed greater infectivity than standard pseudovirions but largely similar neutralization sensitivity. Importantly, hVLPs also showed superior activation of Env-specific B cells. Hence, high-Env HIV-1 virions, obtained through selection of producer cells, represent an adaptable platform for vaccine design and should aid in the study of native Env.IMPORTANCE The paucity of spikes on HIV is a unique feature that has been associated with evasion of the immune system, while increasing spike density has been a goal of vaccine design. Increasing the density of Env by modifying it in various ways has met with limited success. Here, we focused instead on the producer cell. Cells that stably express HIV spikes were screened on the basis of high binding by bnAbs and low binding by nonneutralizing antibodies. Levels of spikes on cells correlated well with those on progeny virions. Importantly, high-Env virus-like particles (hVLPs) were produced with a manifest array of well-defined spikes, and these were shown to be superior in activating desirable B cells. Our study describes HIV particles that are densely coated with functional spikes, which should facilitate the study of HIV spikes and their development as immunogens.


Asunto(s)
VIH-1/ultraestructura , Virión/ultraestructura , Virosomas/ultraestructura , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos B/inmunología , Células Cultivadas , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Microscopía Electrónica de Transmisión , Pruebas de Neutralización , Virosomas/inmunología , Virosomas/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
18.
J Biol Chem ; 291(45): 23569-23577, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27645997

RESUMEN

HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC50 of 72 µm and impaired HIV-1 infection of T cells at an EC50 of 36 µm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , Tiofenos/química , Tiofenos/farmacología , Regulación Alostérica/efectos de los fármacos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Descubrimiento de Drogas , Células HEK293 , Infecciones por VIH/virología , Integrasa de VIH/química , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular
19.
J Chem Inf Model ; 56(8): 1597-607, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27384036

RESUMEN

We describe ADChemCast, a method for using results from virtual screening to create a richer representation of a target binding site, which may be used to improve ranking of compounds and characterize the determinants of ligand-receptor specificity. ADChemCast clusters docked conformations of ligands based on shared pairwise receptor-ligand interactions within chemically similar structural fragments, building a set of attributes characteristic of binders and nonbinders. Machine learning is then used to build rules from the most informational attributes for use in reranking of compounds. In this report, we use ADChemCast to improve the ranking of compounds in 11 diverse proteins from the Database of Useful Decoys-Enhanced (DUD-E) and demonstrate the utility of the method for characterizing relevant binding attributes in HIV reverse transcriptase.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Informática/métodos , Simulación del Acoplamiento Molecular , Ligandos , Conformación Proteica , Interfaz Usuario-Computador
20.
Nature ; 534(7608): 570-4, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27309814

RESUMEN

Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered 'undruggable'. Fragment-based ligand discovery can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes, including those that can access regions of proteins that are difficult to target through binding affinity alone. Here we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins in human proteomes and cells. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and -10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems.


Asunto(s)
Cisteína/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Proteoma/química , Proteoma/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Linfocitos T/metabolismo , Apoptosis , Caspasa 10/química , Caspasa 10/metabolismo , Caspasa 8/química , Caspasa 8/metabolismo , Células Cultivadas , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Humanos , Ligandos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Linfocitos T/química , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA