Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2791: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532087

RESUMEN

This section describes a set of methods for callus induction followed by the successful regeneration of whole plants and obtaining a culture of transgenic hairy roots from buckwheat plants (Fagopyrum esculentum Moench.). Callus induction and regeneration are key steps for many biotechnological, genetic, and breeding approaches, such as genetic modification, production of biologically active compounds, and propagation of valuable germplasm. Induction of hairy roots using Agrobacterium rhizogenes is also an important tool for functional gene research and plant genome modification. While many efforts were invested into the development of the corresponding protocols, they are not equally efficient for different cultivars. Here, we have tested and optimized the protocols of callus induction, regeneration, and transformation using A. rhizogenes for a set of cultivars of F. esculentum, including wild ancestor of cultivated buckwheat F. esculentum ssp. ancestrale and a self-pollinated accession KK8. The optimal medium for callus induction is Murashige-Skoog basal medium with 3% sucrose which includes hormones 2,4-dichlorophenoxyacetic acid 2 mg/L and kinetin 2 mg/L; for shoot initiation 6-benzylaminopurine 2 mg/L, kinetin 0.2 mg/L, and indole-3-acetic acid 0.2 mg/L; for shoot multiplication 6-benzylaminopurine 3 mg/L and indole-3-acetic acid 0.2 mg/L; and for root initiation half-strength Murashige-Skoog medium with 1.5% sucrose and indole-3-butyric acid 1 mg/L. A. rhizogenes R1000 strain proved to be the most efficient in inducing hairy roots in buckwheat and T-DNA transfer from binary vectors. Seedling explants cut at the root area and immersed in agrobacterium suspension, as well as prickling the cotyledonary area with agrobacteria dipped syringe needle, are the most labor-effective methods of infection, allowing to initiate hairy root growth in 100% of explants.


Asunto(s)
Compuestos de Bencilo , Fagopyrum , Purinas , Cinetina , Raíces de Plantas/genética , Fitomejoramiento , Sacarosa
2.
BMC Biol ; 22(1): 52, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38439107

RESUMEN

BACKGROUND: Capsella bursa-pastoris, a cosmopolitan weed of hybrid origin, is an emerging model object for the study of early consequences of polyploidy, being a fast growing annual and a close relative of Arabidopsis thaliana. The development of this model is hampered by the absence of a reference genome sequence. RESULTS: We present here a subgenome-resolved chromosome-scale assembly and a genetic map of the genome of Capsella bursa-pastoris. It shows that the subgenomes are mostly colinear, with no massive deletions, insertions, or rearrangements in any of them. A subgenome-aware annotation reveals the lack of genome dominance-both subgenomes carry similar number of genes. While most chromosomes can be unambiguously recognized as derived from either paternal or maternal parent, we also found homeologous exchange between two chromosomes. It led to an emergence of two hybrid chromosomes; this event is shared between distant populations of C. bursa-pastoris. The whole-genome analysis of 119 samples belonging to C. bursa-pastoris and its parental species C. grandiflora/rubella and C. orientalis reveals introgression from C. orientalis but not from C. grandiflora/rubella. CONCLUSIONS: C. bursa-pastoris does not show genome dominance. In the earliest stages of evolution of this species, a homeologous exchange occurred; its presence in all present-day populations of C. bursa-pastoris indicates on a single origin of this species. The evidence coming from whole-genome analysis challenges the current view that C. grandiflora/rubella was a direct progenitor of C. bursa-pastoris; we hypothesize that it was an extinct (or undiscovered) species sister to C. grandiflora/rubella.


Asunto(s)
Arabidopsis , Capsella , Rubéola (Sarampión Alemán) , Capsella/genética , Genómica , Poliploidía
3.
Plant J ; 117(2): 449-463, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37846604

RESUMEN

Heracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H. sosnowskyi to produce linear furanocoumarins (FCs), photosensitizing compounds, makes it very dangerous. At the same time, linear FCs are compounds with high pharmaceutical value used in skin disease therapies. Despite this high importance, it has not been the focus of genetic and genomic studies. Here, we report a chromosome-scale assembly of Sosnowsky's hogweed genome. Genomic analysis revealed an unusually high number of genes (55106) in the hogweed genome, in contrast to the 25-35 thousand found in most plants. However, we did not find any traces of recent whole-genome duplications not shared with its confamiliar, Daucus carota (carrot), which has approximately thirty thousand genes. The analysis of the genomic proximity of duplicated genes indicates on tandem duplications as a main reason for this increase. We performed a genome-wide search of the genes of the FC biosynthesis pathway and surveyed their expression in aboveground plant parts. Using a combination of expression data and phylogenetic analysis, we found candidate genes for psoralen synthase and experimentally showed the activity of one of them using a heterologous yeast expression system. These findings expand our knowledge on the evolution of gene space in plants and lay a foundation for further analysis of hogweed as an invasive plant and as a source of FCs.


Asunto(s)
Daucus carota , Heracleum , Humanos , Heracleum/genética , Especies Introducidas , Ecosistema , Filogenia , Duplicación de Gen
4.
Plants (Basel) ; 12(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375978

RESUMEN

Grass pollen is one of the leading causes of pollinosis, affecting 10-30% of the world's population. The allergenicity of pollen from different Poaceae species is not the same and is estimated from moderate to high. Aerobiological monitoring is a standard method that allows one to track and predict the dynamics of allergen concentration in the air. Poaceae is a stenopalynous family, and thus grass pollen can usually be identified only at the family level with optical microscopy. Molecular methods, in particular the DNA barcoding technique, can be used to conduct a more accurate analysis of aerobiological samples containing the DNA of various plant species. This study aimed to test the possibility of using the ITS1 and ITS2 nuclear loci for determining the presence of grass pollen from air samples via metabarcoding and to compare the analysis results with the results of phenological observations. Based on the high-throughput sequencing data, we analyzed the changes in the composition of aerobiological samples taken in the Moscow and Ryazan regions for three years during the period of active flowering of grasses. Ten genera of the Poaceae family were detected in airborne pollen samples. The representation for most of them for ITS1 and ITS2 barcodes was similar. At the same time, in some samples, the presence of specific genera was characterized by only one sequence: either ITS1 or ITS2. Based on the analysis of the abundance of both barcode reads in the samples, the following order could describe the change with time in the dominant species in the air: Poa, Alopecurus, and Arrhenatherum in early mid-June, Lolium, Bromus, Dactylis, and Briza in mid-late June, Phleum, Elymus in late June to early July, and Calamagrostis in early mid-July. In most samples, the number of taxa found via metabarcoding analysis was higher compared to that in the phenological observations. The semi-quantitative analysis of high-throughput sequencing data well reflects the abundance of only major grass species at the flowering stage.

5.
Plants (Basel) ; 10(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34579307

RESUMEN

The significant difference in the mtDNA size and structure with simultaneous slow evolving genes makes the mitochondrial genome paradoxical among all three DNA carriers in the plant cell. Such features make mitochondrial genome investigations of particular interest. The genus Helianthus is a diverse taxonomic group, including at least two economically valuable species-common sunflower (H. annuus) and Jerusalem artichoke (H. tuberosus). The successful investigation of the sunflower nuclear genome provided insights into some genomics aspects and significantly intensified sunflower genetic studies. However, the investigations of organelles' genetic information in Helianthus, especially devoted to mitochondrial genomics, are presented by limited studies. Using NGS sequencing, we assembled the complete mitochondrial genomes for H. occidentalis (281,175 bp) and H. tuberosus (281,287 bp) in the current investigation. Besides the master circle chromosome, in the case of H. tuberosus, the 1361 bp circular plasmid was identified. The mitochondrial gene content was found to be identical for both sunflower species, counting 32 protein-coding genes, 3 rRNA, 23 tRNA genes, and 18 ORFs. The comparative analysis between perennial sunflowers revealed common and polymorphic SSR and SNPs. Comparison of perennial sunflowers with H. annuus allowed us to establish similar rearrangements in mitogenomes, which have possibly been inherited from a common ancestor after the divergence of annual and perennial sunflower species. It is notable that H. occidentalis and H. tuberosus mitogenomes are much more similar to H. strumosus than H. grosseserratus.

6.
Front Genet ; 12: 674783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306019

RESUMEN

Amaryllidaceae is a large family with more than 1,600 species, belonging to 75 genera. The largest genus-Allium-is vast, comprising about a thousand species. Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. The genes present in chloroplast genomes (plastomes) play fundamental roles for the photosynthetic plants. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless, some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. We have sequenced plastomes of the following nine Allium (tribe Allieae of Allioideae) species: A. zebdanense, A. moly, A. victorialis, A. macleanii, A. nutans, A. obliquum, A. schoenoprasum, A. pskemense, A. platyspathum, A. fistulosum, A. semenovii, and Nothoscordum bivalve (tribe Leucocoryneae of Allioideae). We compared our data with previously published plastomes and provided our interpretation of Allium plastome genes' annotations because we found some noteworthy inconsistencies with annotations previously reported. For Allium species we estimated the integral evolutionary rate, counted SNPs and indels per nucleotide position as well as compared pseudogenization events in species of three main phylogenetic lines of genus Allium to estimate whether they are potentially important for plant physiology or just follow the phylogenetic pattern. During examination of the 38 species of Allium and the 11 of other Amaryllidaceae species we found that rps16, rps2, infA, ccsA genes have lost their functionality multiple times in different species (regularly evolutionary events), while the pseudogenization of other genes was stochastic events. We found that the "normal" or "pseudo" state of rps16, rps2, infA, ccsA genes correlates well with the evolutionary line of genus the species belongs to. The positive selection in various NADH dehydrogenase (ndh) genes as well as in matK, accD, and some others were found. Taking into account known mechanisms of coping with excessive light by cyclic electron transport, we can hypothesize that adaptive evolution in genes, coding subunits of NADH-plastoquinone oxidoreductase could be driven by abiotic factors of alpine habitats, especially by intensive light and UV radiation.

7.
Plants (Basel) ; 9(4)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276324

RESUMEN

Shepherd's purse (Capsella bursa-pastoris) is a cosmopolitan annual weed and a promising model plant for studying allopolyploidization in the evolution of angiosperms. Though plant mitochondrial genomes are a valuable source of genetic information, they are hard to assemble. At present, only the complete mitogenome of C. rubella is available out of all species of the genus Capsella. In this work, we have assembled the complete mitogenome of C. bursa-pastoris using high-precision PacBio SMRT third-generation sequencing technology. It is 287,799 bp long and contains 32 protein-coding genes, 3 rRNAs, 25 tRNAs corresponding to 15 amino acids, and 8 open reading frames (ORFs) supported by RNAseq data. Though many repeat regions have been found, none of them is longer than 1 kbp, and the most frequent structural variant originated from these repeats is present in only 4% of the mitogenome copies. The mitochondrial DNA sequence of C. bursa-pastoris differs from C. rubella, but not from C. orientalis, by two long inversions, suggesting that C. orientalis could be its maternal progenitor species. In total, 377 C to U RNA editing sites have been detected. All genes except cox1 and atp8 contain RNA editing sites, and most of them lead to non-synonymous changes of amino acids. Most of the identified RNA editing sites are identical to corresponding RNA editing sites in A. thaliana.

8.
Gene ; 726: 144154, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31589962

RESUMEN

In this work the complete chloroplast DNAs of Allium paradoxum and Allium ursinum, two edible species of Allium subg. Amerallium (the first lineage), were sequenced, assembled, annotated, and compared with complete Allium plastomes of the second and third evolutionary lines from GenBank database. The A. ursinum plastome contains 90 predicted genes (81 unique) including 5 pseudogenes, while A. paradoxum has 88 predicted genes (79 unique) including 19 pseudogenes. The comparative analysis has revealed that the A. paradoxum plastome differs markedly from those of other species. Due to many deletions, the A. paradoxum plastome is the shortest of known for Allium species, being only 145,819 bp long. The most prominent distinctions are (1) a 4825 bp long local inversion that spans from the ndhE to the rpl32 gene in the small single copy region and (2) pseudogenization, or the loss of all NADH-genes. In contrast, the plastome of A. ursinum - a species from the first evolutionary line (as well as A. paradoxum) - resembles the Allium species of the second and third evolutionary lines, showing no large rearrangements or discrepancies in gene content. It is unclear yet whether only A. paradoxum was affected by some evolutionary events or its close relatives from both sect. Briseis and other sections of Amerallium were altered as well. We speculate the sunlight-intolerant, shade-loving nature of A. paradoxum and the impairment of the ndh genes in its plastome could be interrelated phenomena.


Asunto(s)
Allium/genética , Reordenamiento Génico/genética , Genes de Plantas/genética , Cebollas/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , Evolución Molecular , Genoma del Cloroplasto/genética , Genoma de Planta/genética , Filogenia , Hojas de la Planta/genética , Seudogenes/genética , Análisis de Secuencia de ADN/métodos
9.
Genes (Basel) ; 10(2)2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736447

RESUMEN

Plants are widely used for food and beverage preparation, most often in the form of complex mixtures of dried and ground parts, such as teas, spices or herbal medicines. Quality control of such products is important due to the potential health risks from the presence of unlabelled components or absence of claimed ones. A promising approach to analyse such products is DNA metabarcoding due to its high resolution and sensitivity. However, this method's application in food analysis requires several methodology optimizations in DNA extraction, amplification and library preparation. In this study, we present such optimizations. The most important methodological outcomes are the following: 1) the DNA extraction method greatly influences amplification success; 2) the main problem for the application of metabarcoding is DNA purity, not integrity or quantity; and 3) the "non-amplifiable" samples can be amplified with polymerases resistant to inhibitors. Using this optimized workflow, we analysed a broad set of plant products (teas, spices and herbal remedies) using two NGS platforms. The analysis revealed the problem of both the presence of extraneous components and the absence of labelled ones. Notably, for teas, no correlation was found between the price and either the absence of labelled components or presence of unlabelled ones; for spices, a negative correlation was found between the price and presence of unlabelled components.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Análisis de los Alimentos/métodos , Código de Barras del ADN Taxonómico/normas , ADN de Plantas/análisis , Análisis de los Alimentos/normas , Secuencias Repetitivas de Ácidos Nucleicos , Especias/normas , Té/genética , Té/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA