Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(5): e3002405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713717

RESUMEN

We report a new visualization tool for analysis of whole-genome assembly-assembly alignments, the Comparative Genome Viewer (CGV) (https://ncbi.nlm.nih.gov/genome/cgv/). CGV visualizes pairwise same-species and cross-species alignments provided by National Center for Biotechnology Information (NCBI) using assembly alignment algorithms developed by us and others. Researchers can examine large structural differences spanning chromosomes, such as inversions or translocations. Users can also navigate to regions of interest, where they can detect and analyze smaller-scale deletions and rearrangements within specific chromosome or gene regions. RefSeq or user-provided gene annotation is displayed where available. CGV currently provides approximately 800 alignments from over 350 animal, plant, and fungal species. CGV and related NCBI viewers are undergoing active development to further meet needs of the research community in comparative genome visualization.


Asunto(s)
Genoma , Programas Informáticos , Animales , Genoma/genética , Alineación de Secuencia/métodos , Genómica/métodos , Algoritmos , Estados Unidos , Humanos , Eucariontes/genética , Bases de Datos Genéticas , National Library of Medicine (U.S.) , Anotación de Secuencia Molecular/métodos
2.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077029

RESUMEN

We report a new visualization tool for analysis of whole genome assembly-assembly alignments, the Comparative Genome Viewer (CGV) (https://ncbi.nlm.nih.gov/genome/cgv/). CGV visualizes pairwise same-species and cross-species alignments provided by NCBI using assembly alignment algorithms developed by us and others. Researchers can examine the alignments between the two assemblies using two alternate views: a chromosome ideogram-based view or a 2D genome dotplot. Whole genome alignment views expose large structural differences spanning chromosomes, such as inversions or translocations. Users can also navigate to regions of interest, where they can detect and analyze smaller-scale deletions and rearrangements within specific chromosome or gene regions. RefSeq or user-provided gene annotation is displayed in the ideogram view where available. CGV currently provides approximately 700 alignments from over 300 animal, plant, and fungal species. CGV and related NCBI viewers are undergoing active development to further meet needs of the research community in comparative genome visualization.

3.
Nucleic Acids Res ; 39(Database issue): D225-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21109532

RESUMEN

NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Asunto(s)
Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Biológicos , Proteínas/clasificación , Análisis de Secuencia de Proteína
4.
BMC Evol Biol ; 10: 154, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20500864

RESUMEN

BACKGROUND: The arylalkylamine N-acetyltransferase (AANAT) family is divided into structurally distinct vertebrate and non-vertebrate groups. Expression of vertebrate AANATs is limited primarily to the pineal gland and retina, where it plays a role in controlling the circadian rhythm in melatonin synthesis. Based on the role melatonin plays in biological timing, AANAT has been given the moniker "the Timezyme". Non-vertebrate AANATs, which occur in fungi and protists, are thought to play a role in detoxification and are not known to be associated with a specific tissue. RESULTS: We have found that the amphioxus genome contains seven AANATs, all having non-vertebrate type features. This and the absence of AANATs from the genomes of Hemichordates and Urochordates support the view that a major transition in the evolution of the AANATs may have occurred at the onset of vertebrate evolution. Analysis of the expression pattern of the two most structurally divergent AANATs in Branchiostoma lanceolatum (bl) revealed that they are expressed early in development and also in the adult at low levels throughout the body, possibly associated with the neural tube. Expression is clearly not exclusively associated with the proposed analogs of the pineal gland and retina. blAANAT activity is influenced by environmental lighting, but light/dark differences do not persist under constant light or constant dark conditions, indicating they are not circadian in nature. bfAANAT alpha and bfAANAT delta' have unusually alkaline (> 9.0) optimal pH, more than two pH units higher than that of vertebrate AANATs. CONCLUSIONS: The substrate selectivity profiles of bfAANAT alpha and delta' are relatively broad, including alkylamines, arylalkylamines and diamines, in contrast to vertebrate forms, which selectively acetylate serotonin and other arylalkylamines. Based on these features, it appears that amphioxus AANATs could play several roles, including detoxification and biogenic amine inactivation. The presence of seven AANATs in amphioxus genome supports the view that arylalkylamine and polyamine acetylation is important to the biology of this organism and that these genes evolved in response to specific pressures related to requirements for amine acetylation.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/genética , Cordados no Vertebrados/genética , Evolución Molecular , Familia de Multigenes , Secuencia de Aminoácidos , Animales , Cordados no Vertebrados/enzimología , ADN Complementario/genética , Expresión Génica , Funciones de Verosimilitud , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato
5.
Biol Direct ; 5: 31, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20433725

RESUMEN

BACKGROUND: Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. RESULTS: We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. CONCLUSIONS: These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.


Asunto(s)
Enzimas/clasificación , Enzimas/metabolismo , Evolución Molecular , Enzimas/genética , Filogenia
6.
Nucleic Acids Res ; 37(21): 7124-36, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19786499

RESUMEN

The iron(II)- and 2-oxoglutarate (2OG)-dependent dioxygenase AlkB from Escherichia coli (EcAlkB) repairs alkylation damage in DNA by direct reversal. EcAlkB substrates include methylated bases, such as 1-methyladenine (m(1)A) and 3-methylcytosine (m(3)C), as well as certain bulkier lesions, for example the exocyclic adduct 1,N(6)-ethenoadenine (epsilonA). EcAlkB is the only bacterial AlkB protein characterized to date, and we here present an extensive bioinformatics and functional analysis of bacterial AlkB proteins. Based on sequence phylogeny, we show that these proteins can be subdivided into four groups: denoted 1A, 1B, 2A and 2B; each characterized by the presence of specific conserved amino acid residues in the putative nucleotide-recognizing domain. A scattered distribution of AlkB proteins from the four different groups across the bacterial kingdom indicates a substantial degree of horizontal transfer of AlkB genes. DNA repair activity was associated with all tested recombinant AlkB proteins. Notably, both a group 2B protein from Xanthomonas campestris and a group 2A protein from Rhizobium etli repaired etheno adducts, but had negligible activity on methylated bases. Our data indicate that the majority, if not all, of the bacterial AlkB proteins are DNA repair enzymes, and that some of these proteins do not primarily target methylated bases.


Asunto(s)
Proteínas Bacterianas/clasificación , Enzimas Reparadoras del ADN/clasificación , Dioxigenasas/clasificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biología Computacional , ADN/metabolismo , Daño del ADN , Metilación de ADN , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , ADN de Cadena Simple/metabolismo , Dioxigenasas/química , Dioxigenasas/genética , Proteínas de Escherichia coli/química , Prueba de Complementación Genética , Oxigenasas de Función Mixta/química , Datos de Secuencia Molecular , Filogenia , ARN/metabolismo , Análisis de Secuencia de Proteína
7.
Genome Biol ; 9(11): R161, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19014707

RESUMEN

BACKGROUND: Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. RESULTS: We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. CONCLUSIONS: Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.


Asunto(s)
Bacillaceae/química , Bacillaceae/fisiología , Proteínas Bacterianas/análisis , Genoma Bacteriano , Dióxido de Silicio , Microbiología del Agua , Bacillaceae/genética , Fósiles , Calor , Nueva Zelanda
8.
Nucleic Acids Res ; 36(17): 5451-61, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18718927

RESUMEN

Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant.


Asunto(s)
Dioxigenasas/metabolismo , Flexiviridae/enzimología , ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacteriófagos/genética , Biología Computacional , Dioxigenasas/clasificación , Dioxigenasas/genética , Genoma Viral , Metilación , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Homología de Secuencia de Aminoácido , Proteínas Virales/clasificación , Proteínas Virales/genética
9.
Biol Direct ; 3: 26, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18593465

RESUMEN

BACKGROUND: The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. RESULTS: We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins. CONCLUSION: The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria. REVIEWERS: This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.


Asunto(s)
Chlamydiaceae/genética , Chlamydiaceae/aislamiento & purificación , Hibridación Genómica Comparativa , Genoma Bacteriano , Secuencia de Bases , Chlamydiaceae/crecimiento & desarrollo , Chlamydiaceae/metabolismo , Concentración de Iones de Hidrógeno , Metano/metabolismo
10.
PLoS One ; 2(9): e955, 2007 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-17895995

RESUMEN

Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.


Asunto(s)
Deinococcus/genética , Deinococcus/efectos de la radiación , Genoma Bacteriano , Secuencia de Aminoácidos , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/efectos de la radiación , ADN Bacteriano/genética , Genes Bacterianos/genética , Rayos Infrarrojos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido , Espectrometría por Rayos X , Rayos Ultravioleta
11.
J Biol Chem ; 281(47): 36149-61, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-16990279

RESUMEN

Haloacid dehalogenase (HAD)-like hydrolases are a vast superfamily of largely uncharacterized enzymes, with a few members shown to possess phosphatase, beta-phosphoglucomutase, phosphonatase, and dehalogenase activities. Using a representative set of 80 phosphorylated substrates, we characterized the substrate specificities of 23 soluble HADs encoded in the Escherichia coli genome. We identified small molecule phosphatase activity in 21 HADs and beta-phosphoglucomutase activity in one protein. The E. coli HAD phosphatases show high catalytic efficiency and affinity to a wide range of phosphorylated metabolites that are intermediates of various metabolic reactions. Rather than following the classical "one enzyme-one substrate" model, most of the E. coli HADs show remarkably broad and overlapping substrate spectra. At least 12 reactions catalyzed by HADs currently have no EC numbers assigned in Enzyme Nomenclature. Surprisingly, most HADs hydrolyzed small phosphodonors (acetyl phosphate, carbamoyl phosphate, and phosphoramidate), which also serve as substrates for autophosphorylation of the receiver domains of the two-component signal transduction systems. The physiological relevance of the phosphatase activity with the preferred substrate was validated in vivo for one of the HADs, YniC. Many of the secondary activities of HADs might have no immediate physiological function but could comprise a reservoir for evolution of novel phosphatases.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano , Monoéster Fosfórico Hidrolasas/genética , Catálisis , Clonación Molecular , Análisis por Conglomerados , Biología Computacional , Evolución Molecular , Glucosa/química , Hidrólisis , Cinética , Familia de Multigenes , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Transducción de Señal , Especificidad por Sustrato
12.
Int J Syst Evol Microbiol ; 56(Pt 9): 2083-2088, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16957103

RESUMEN

A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at low temperature. This prosthecate bacterium was a psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28 degrees Celsius (optimum 15-20 degrees Celsius) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid was 18 : 1omega7c and the major phospholipids were phosphatidylglycerols. The G+C content of the DNA was 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023(T) was most closely related to Asticcacaulis biprosthecium (98 % similarity), Asticcacaulis taihuensis (98 %) and Asticcacaulis excentricus (95 %). However, low levels of DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed. The type strain is Z-0023(T) (=DSM 16100(T)=ATCC BAA-896(T)).


Asunto(s)
Composición de Base/genética , Caulobacteraceae/aislamiento & purificación , Ácidos Grasos/análisis , ARN Ribosómico 16S/análisis , Técnicas de Tipificación Bacteriana , Caulobacteraceae/clasificación , Caulobacteraceae/genética , ADN Bacteriano/análisis , Datos de Secuencia Molecular , Fosfolípidos/análisis , Microbiología del Suelo , Sacarosa/metabolismo
13.
J Bacteriol ; 188(3): 1199-204, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428429

RESUMEN

The ionizing radiation (IR) dose that yields 20% survival (D20) of Shewanella oneidensis MR-1 is lower by factors of 20 and 200 than those for Escherichia coli and Deinococcus radiodurans, respectively. Transcriptome analysis was used to identify the genes of MR-1 responding to 40 Gy (D20). We observed the induction of 170 genes and repression of 87 genes in MR-1 during a 1-h recovery period after irradiation. The genomic response of MR-1 to IR is very similar to its response to UV radiation (254 nm), which included induction of systems involved in DNA repair and prophage synthesis and the absence of differential regulation of tricarboxylic acid cycle activity, which occurs in IR-irradiated D. radiodurans. Furthermore, strong induction of genes encoding antioxidant enzymes in MR-1 was observed. DNA damage may not be the principal cause of high sensitivity to IR, considering that MR-1 carries genes encoding a complex set of DNA repair systems and 40 Gy IR induces less than one double-strand break in its genome. Instead, a combination of oxidative stress, protein damage, and prophage-mediated cell lysis during irradiation and recovery might underlie this organism's great sensitivity to IR.


Asunto(s)
Daño del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/genética , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Análisis de Secuencia por Matrices de Oligonucleótidos , Radiación Ionizante , Shewanella/efectos de la radiación , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/efectos de la radiación , Estrés Oxidativo , Profagos/genética , Tolerancia a Radiación , Especies Reactivas de Oxígeno/metabolismo , Shewanella/genética , Rayos Ultravioleta
14.
BMC Evol Biol ; 5: 57, 2005 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16242020

RESUMEN

BACKGROUND: Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. RESULTS: By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177). CONCLUSION: After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria.


Asunto(s)
Deinococcus/genética , Genoma Arqueal , Thermus thermophilus/genética , Aclimatación , Archaea/genética , Daño del ADN , Reparación del ADN , Escherichia coli/metabolismo , Rayos gamma , Transferencia de Gen Horizontal , Genes Arqueales , Genes Bacterianos , Genoma , Genoma Bacteriano , Calor , Hierro/química , Manganeso/química , Modelos Genéticos , Familia de Multigenes , Fenotipo , Filogenia , Plásmidos/metabolismo , Temperatura
15.
FEMS Microbiol Rev ; 29(2): 361-75, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15808748

RESUMEN

We have recently shown that Deinococcus radiodurans and other radiation resistant bacteria accumulate exceptionally high intracellular manganese and low iron levels. In comparison, the dissimilatory metal-reducing bacterium Shewanella oneidensis accumulates Fe but not Mn and is extremely sensitive to radiation. We have proposed that for Fe-rich, Mn-poor cells killed at radiation doses which cause very little DNA damage, cell death might be induced by the release of Fe(II) from proteins during irradiation, leading to additional cellular damage by Fe(II)-dependent oxidative stress. In contrast, Mn(II) ions concentrated in D. radiodurans might serve as antioxidants that reinforce enzymic systems which defend against oxidative stress during recovery. We extend our hypothesis here to include consideration of respiration, tricarboxylic acid cycle activity, peptide transport and metal reduction, which together with Mn(II) transport represent potential new targets to control recovery from radiation injury.


Asunto(s)
Deinococcus/crecimiento & desarrollo , Deinococcus/efectos de la radiación , Estrés Oxidativo , Shewanella/crecimiento & desarrollo , Shewanella/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deinococcus/fisiología , Hierro/metabolismo , Manganeso/metabolismo , Tolerancia a Radiación , Radiación Ionizante , Shewanella/fisiología , Rayos Ultravioleta
16.
Proc Natl Acad Sci U S A ; 101(52): 18036-41, 2004 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-15596722

RESUMEN

We report the complete genome sequence of the deep-sea gamma-proteobacterium, Idiomarina loihiensis, isolated recently from a hydrothermal vent at 1,300-m depth on the Loihi submarine volcano, Hawaii. The I. loihiensis genome comprises a single chromosome of 2,839,318 base pairs, encoding 2,640 proteins, four rRNA operons, and 56 tRNA genes. A comparison of I. loihiensis to the genomes of other gamma-proteobacteria reveals abundance of amino acid transport and degradation enzymes, but a loss of sugar transport systems and certain enzymes of sugar metabolism. This finding suggests that I. loihiensis relies primarily on amino acid catabolism, rather than on sugar fermentation, for carbon and energy. Enzymes for biosynthesis of purines, pyrimidines, the majority of amino acids, and coenzymes are encoded in the genome, but biosynthetic pathways for Leu, Ile, Val, Thr, and Met are incomplete. Auxotrophy for Val and Thr was confirmed by in vivo experiments. The I. loihiensis genome contains a cluster of 32 genes encoding enzymes for exopolysaccharide and capsular polysaccharide synthesis. It also encodes diverse peptidases, a variety of peptide and amino acid uptake systems, and versatile signal transduction machinery. We propose that the source of amino acids for I. loihiensis growth are the proteinaceous particles present in the deep sea hydrothermal vent waters. I. loihiensis would colonize these particles by using the secreted exopolysaccharide, digest these proteins, and metabolize the resulting peptides and amino acids. In summary, the I. loihiensis genome reveals an integrated mechanism of metabolic adaptation to the constantly changing deep-sea hydrothermal ecosystem.


Asunto(s)
Aminoácidos/metabolismo , Carbono/metabolismo , Gammaproteobacteria/genética , Genoma Bacteriano , Quimiotaxis , Fermentación , Genoma , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , ARN Ribosómico/genética , ARN de Transferencia/genética , Transducción de Señal
17.
J Bacteriol ; 186(19): 6575-85, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15375139

RESUMEN

We describe a simple theoretical framework for identifying orthologous sets of genes that deviate from a clock-like model of evolution. The approach used is based on comparing the evolutionary distances within a set of orthologs to a standard intergenomic distance, which was defined as the median of the distribution of the distances between all one-to-one orthologs. Under the clock-like model, the points on a plot of intergenic distances versus intergenomic distances are expected to fit a straight line. A statistical technique to identify significant deviations from the clock-like behavior is described. For several hundred analyzed orthologous sets representing three well-defined bacterial lineages, the alpha-Proteobacteria, the gamma-Proteobacteria, and the Bacillus-Clostridium group, the clock-like null hypothesis could not be rejected for approximately 70% of the sets, whereas the rest showed substantial anomalies. Subsequent detailed phylogenetic analysis of the genes with the strongest deviations indicated that over one-half of these genes probably underwent a distinct form of horizontal gene transfer, xenologous gene displacement, in which a gene is displaced by an ortholog from a different lineage. The remaining deviations from the clock-like model could be explained by lineage-specific acceleration of evolution. The results indicate that although xenologous gene displacement is a major force in bacterial evolution, a significant majority of orthologous gene sets in three major bacterial lineages evolved in accordance with the clock-like model. The approach described here allows rapid detection of deviations from this mode of evolution on the genome scale.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Bacteriano , Modelos Genéticos , Filogenia
18.
Genome Biol ; 4(9): R55, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12952534

RESUMEN

BACKGROUND: Shuffling and disruption of operons and horizontal gene transfer are major contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon' hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via horizontal gene transfer, although their retention could be favored by the advantage of coregulation of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities. RESULTS: Since a substantial number of operons have been identified experimentally in only a few model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The phylogenetic affinities within these predicted operons were assessed first by sequence similarity analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous cases of apparent horizontal transfer of entire operons were detected. However, it was shown that apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene by a horizontally transferred ortholog from a taxonomically distant organism without change of the local gene organization. On rarer occasions, operons might have evolved via independent assembly, in part from horizontally acquired genes. CONCLUSIONS: The discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level.


Asunto(s)
Archaea/genética , Bacterias/genética , Evolución Molecular , Operón/genética , Filogenia , Transferasas Alquil y Aril/genética , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Deinococcus/genética , Deinococcus/metabolismo , Complejo I de Transporte de Electrón/genética , Transferencia de Gen Horizontal , Genes Arqueales/genética , Genes Bacterianos/genética , Genoma Arqueal , Genoma Bacteriano , Halobacterium/genética , Halobacterium/metabolismo , Isoleucina/biosíntesis , Leucina/biosíntesis , Lípidos/biosíntesis , Lipopolisacáridos/biosíntesis , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Mycoplasma/genética , Subunidades de Proteína/genética , Proteínas Ribosómicas/genética , Rickettsia/genética , Rickettsia/metabolismo
19.
Proc Natl Acad Sci U S A ; 100(7): 4191-6, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12651953

RESUMEN

Deinococcus radiodurans R1 (DEIRA) is a bacterium best known for its extreme resistance to the lethal effects of ionizing radiation, but the molecular mechanisms underlying this phenotype remain poorly understood. To define the repertoire of DEIRA genes responding to acute irradiation (15 kGy), transcriptome dynamics were examined in cells representing early, middle, and late phases of recovery by using DNA microarrays covering approximately 94% of its predicted genes. At least at one time point during DEIRA recovery, 832 genes (28% of the genome) were induced and 451 genes (15%) were repressed 2-fold or more. The expression patterns of the majority of the induced genes resemble the previously characterized expression profile of recA after irradiation. DEIRA recA, which is central to genomic restoration after irradiation, is substantially up-regulated on DNA damage (early phase) and down-regulated before the onset of exponential growth (late phase). Many other genes were expressed later in recovery, displaying a growth-related pattern of induction. Genes induced in the early phase of recovery included those involved in DNA replication, repair, and recombination, cell wall metabolism, cellular transport, and many encoding uncharacterized proteins. Collectively, the microarray data suggest that DEIRA cells efficiently coordinate their recovery by a complex network, within which both DNA repair and metabolic functions play critical roles. Components of this network include a predicted distinct ATP-dependent DNA ligase and metabolic pathway switching that could prevent additional genomic damage elicited by metabolism-induced free radicals.


Asunto(s)
Reparación del ADN/efectos de la radiación , Deinococcus/genética , Deinococcus/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Transcripción Genética/efectos de la radiación , Secuencia de Aminoácidos , División Celular/efectos de la radiación , Reparación del ADN/genética , Deinococcus/crecimiento & desarrollo , Datos de Secuencia Molecular , Operón/efectos de la radiación , Radiación Ionizante , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
FEMS Microbiol Lett ; 209(2): 255-60, 2002 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-12007814

RESUMEN

The lipoyl-binding domain is often present, in one or several copies, in the E2 subunit and, less often, in the E1 and E3 subunits of 2-oxo acid dehydrogenase complexes. Phylogenetic analysis shows evidence of multiple, independent intragenomic recombination events between different versions of the lipoyl-binding domain in various bacteria and eukaryotic mitochondria, leading to homogenization of the sequences of the lipoyl-binding domain within the same enzymatic complex in several bacterial lineages. This appears to be the first case of sequence homogenization at the level of an individual domain in prokaryotes.


Asunto(s)
Bacterias/genética , Cetona Oxidorreductasas/química , Cetona Oxidorreductasas/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Recombinación Genética/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida) , Bacterias/enzimología , Evolución Molecular , Duplicación de Gen , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...