Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Autophagy ; 20(9): 1948-1967, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38726830

RESUMEN

The Atg8-family proteins (MAP1LC3/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2) play a pivotal role in macroautophagy/autophagy through their ability to help form autophagosomes. Although autophagosomes form in the cytoplasm, nuclear levels of the Atg8-family proteins are significant. Recently, the nuclear/cytoplasmic shuttling of LC3B was shown to require deacetylation of two Lys residues (K49 and K51 in LC3B), which are conserved in Atg8-family proteins. To exit the nucleus, deacetylated LC3B must bind TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2) through interaction with the LC3-interacting region (LIR) of TP53INP2 (TP53INP2LIR). To examine their selectivity for TP53INP2 and the role of the conserved Lys residues in Atg8-family proteins, we prepared the six human Atg8-family proteins and acetylated variants of LC3A and GABARAP for biophysical and structural characterization of their interactions with the TP53INP2LIR. Isothermal titration calorimetry (ITC) experiments demonstrate that this LIR binds preferentially to GABARAP subfamily proteins, and that only acetylation of the second Lys residue reduces binding to GABARAP and LC3A. Crystal structures of complexes with GABARAP and LC3A (acetylated and deacetylated) define a ß-sheet in the TP53INP2LIR that determines the GABARAP selectivity and establishes the importance of acetylation at the second Lys. The in vitro results were confirmed in cells using acetyl-mimetic variants of GABARAP and LC3A to examine nuclear/cytoplasmic shuttling and colocalization with TP53INP2. Together, the results demonstrate that TP53INP2 shows selectivity to the GABARAP subfamily and acetylation at the second Lys of GABARAP and LC3A disrupts key interactions with TP53INP2 required for their nuclear/cytoplasmic shuttling.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Autofagia , Proteínas Asociadas a Microtúbulos , Unión Proteica , Acetilación , Humanos , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Cristalografía por Rayos X , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/química , Proteínas Nucleares
2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068946

RESUMEN

The p53 protein is a transcriptional regulatory factor and many of its functions require that it forms a tetrameric structure. Although the tetramerization domain of mammalian p53 proteins (p53TD) share significant sequence similarities, it was recently shown that the tree shrew p53TD is considerably more thermostable than the human p53TD. To determine whether other mammalian species display differences in this domain, we used biophysical, functional, and structural studies to compare the properties of the p53TDs from six mammalian model organisms (human, tree shrew, guinea pig, Chinese hamster, sheep, and opossum). The results indicate that the p53TD from the opossum and tree shrew are significantly more stable than the human p53TD, and there is a correlation between the thermostability of the p53TDs and their ability to activate transcription. Structural analysis of the tree shrew and opossum p53TDs indicated that amino acid substitutions within two distinct regions of their p53TDs can dramatically alter hydrophobic packing of the tetramer, and in particular substitutions at positions corresponding to F341 and Q354 of the human p53TD. Together, the results suggest that subtle changes in the sequence of the p53TD can dramatically alter the stability, and potentially lead to important changes in the functional activity, of the p53 protein.


Asunto(s)
Proteína p53 Supresora de Tumor , Animales , Cobayas , Humanos , Zarigüeyas/metabolismo , Ovinos , Proteína p53 Supresora de Tumor/metabolismo , Tupaia/metabolismo
3.
Biomimetics (Basel) ; 8(8)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132545

RESUMEN

Biomineralization peptides are versatile tools for generating nanostructures since they can make specific interactions with various inorganic metals, which can lead to the formation of intricate nanostructures. Previously, we examined the influence that multivalency has on inorganic structures formed by p53 tetramer-based biomineralization peptides and noted a connection between the geometry of the peptide and its ability to regulate nanostructure formation. To investigate the role of multivalency in nanostructure formation by biomineralization peptides more thoroughly, silver biomineralization peptides were engineered by linking them to additional self-assembling molecules based on coiled-coil peptides and multistranded DNA oligomers. Under mild reducing conditions at room temperature, these engineered biomineralization peptides self-assembled and formed silver nanostructures. The trimeric forms of the biomineralization peptides were the most efficient in forming a hexagonal disk nanostructure, with both the coiled-coil peptide and DNA-based multimeric forms. Together, the results suggest that the spatial arrangement of biomineralization peptides plays a more important role in regulating nanostructure formation than their valency.

4.
Nature ; 617(7961): 608-615, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165185

RESUMEN

Peroxisomes are organelles that carry out ß-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their dysfunction1. Among disease-causing variant genes are those required for protein transport into peroxisomes. The peroxisomal protein import machinery, which also shares similarities with chloroplasts2, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes3. Current models postulate a large pore formed by transmembrane proteins4; however, so far, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes the membrane proteins Pex13 and Pex14 and the cargo-protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions in Pex13 and Pex5 resemble those found in nuclear pore complex proteins. Peroxisomal protein import depends on both the number and pattern of aromatic residues in these intrinsically disordered regions, consistent with their roles as 'stickers' in associative polymer models of LLPS5,6. Finally, imaging fluorescence cross-correlation spectroscopy shows that cargo import correlates with transient focusing of GFP-Pex13 and GFP-Pex14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our findings lead us to suggest a model in which LLPS of Pex5-cargo with Pex13 and Pex14 results in transient protein transport channels7.


Asunto(s)
Proteínas de la Membrana , Peroxinas , Peroxisomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Peroxinas/química , Peroxinas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/química , Peroxisomas/metabolismo , Transición de Fase , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232396

RESUMEN

The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.


Asunto(s)
Cromatina , Replicación del ADN , Aminoácidos/metabolismo , Arginina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/química , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , ADN/metabolismo , Humanos , Péptidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 50(14): 8331-8348, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871297

RESUMEN

SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO-SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.


Asunto(s)
Cuerpos Nucleares , Proteína de la Leucemia Promielocítica , Proteína SUMO-1 , Zinc , Secuencias de Aminoácidos , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Zinc/química
7.
Biochem Biophys Res Commun ; 581: 1-5, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34637963

RESUMEN

Reversible protein phosphorylation is a key mechanism for regulating numerous cellular events. The metal-dependent protein phosphatases (PPM) are a family of Ser/Thr phosphatases, which uniquely recognize their substrate as a monomeric enzyme. In the case of PPM1A, it has the capacity to dephosphorylate a variety of substrates containing different sequences, but it is not yet fully understood how it recognizes its substrates. Here we analyzed the role of Arg33 and Arg186, two residues near the active site, on the dephosphorylation activity of PPM1A. The results showed that both Arg residues were critical for enzymatic activity and docking-model analysis revealed that Arg186 is positioned to interact with the substrate phosphate group. In addition, our results suggest that which Arg residue plays a more significant role in the catalysis depends directly on the substrate.


Asunto(s)
Arginina/química , Oligopéptidos/química , Proteína Fosfatasa 2C/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arginina/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Mutación , Oligopéptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato
8.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34547241

RESUMEN

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Asunto(s)
Senescencia Celular/fisiología , NAD/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Línea Celular Tumoral , Senescencia Celular/genética , Citosol , Glucosa/metabolismo , Humanos , Hidrógeno/química , Hidrógeno/metabolismo , Malato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , NAD/fisiología , Oxidación-Reducción , Piruvato Carboxilasa/metabolismo , Ácido Pirúvico/metabolismo
9.
Nucleic Acids Res ; 49(13): 7424-7436, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34197620

RESUMEN

The pioneer transcription factor Pax7 contains two DNA binding domains (DBD), a paired and a homeo domain. Previous work on Pax7 and the related Pax3 showed that each DBD binds a cognate DNA sequence, thus defining two targets of binding and possibly modalities of action. Genomic targets of Pax7 pioneer action leading to chromatin opening are enriched for composite DNA target sites containing juxtaposed sites for both paired and homeo domains. The present work investigated the implication of the DBDs in pioneer action. We show that the composite sequence is a higher affinity binding site and that efficient binding to this site involves both DBDs of the same Pax7 molecule. This binding is not sensitive to cytosine methylation of the DNA sites consistent with pioneer action within nucleosomal heterochromatin. Introduction of single amino acid mutations in either paired or homeo domain that impair binding to cognate DNA sequences showed that both DBDs must be intact for pioneer action. In contrast, only the paired domain is required for low affinity binding of heterochromatin sites. Thus, Pax7 pioneer action on heterochromatin requires unique protein:DNA interactions that are more complex compared to its simpler DNA binding modalities at accessible enhancer target sites.


Asunto(s)
Factor de Transcripción PAX7/química , Factor de Transcripción PAX7/metabolismo , Sitios de Unión , Células Cultivadas , Citosina/metabolismo , ADN/química , ADN/metabolismo , Metilación de ADN , Mutación , Motivos de Nucleótidos , Factor de Transcripción PAX7/genética , Unión Proteica , Dominios Proteicos , Activación Transcripcional
10.
Pharmacol Ther ; 215: 107622, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32650009

RESUMEN

Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Metales/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Desarrollo de Medicamentos , Regulación de la Expresión Génica , Humanos , Mutación , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/química
11.
Exp Hematol ; 88: 68-82.e5, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32682001

RESUMEN

The myeloid nuclear differentiation antigen (MNDA) is a stress-induced protein that promotes degradation of the anti-apoptotic factor MCL-1 and apoptosis in myeloid cells. MNDA is also expressed in normal lymphoid cells and in B-cell clones isolated from individuals with chronic lymphocytic leukemia (CLL), a disease characterized by abnormal apoptosis control. We found that MNDA expression levels inversely correlate with the amount of the anti-apoptotic proteins MCL-1 and BCL-2 in human CLL samples. We report that in response to chemotherapeutic agents that induce genotoxic stress, MNDA exits its typical nucleolar localization and accumulates in the nucleoplasm of CLL and lymphoid cells. Then, MNDA binds chromatin at Mcl1 and Bcl2 genes and affects the transcriptional competence of RNA polymerase II. Our data also reveal that MNDA specifically associates with Mcl1 and Bcl2 (pre-) mRNAs and favors their rapid turnover as a prompt response to genotoxic stress. We propose that this rapid dynamic tuning of RNA levels, which leads to the destabilization of Mcl1 and Bcl2 transcripts, represents a post-transcriptional mechanism of apoptosis control in CLL cells. These results provide an explanation of previous clinical data and corroborate the finding that higher MNDA expression levels in CLL are associated with a better clinical course.


Asunto(s)
Antígenos de Diferenciación Mielomonocítica/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Factores de Transcripción/metabolismo , Anciano , Anciano de 80 o más Años , Antígenos de Diferenciación Mielomonocítica/genética , Apoptosis/genética , Cromatina/genética , Cromatina/metabolismo , Femenino , Células HL-60 , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factores de Transcripción/genética
12.
Structure ; 28(5): 573-585.e5, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32348746

RESUMEN

The human PIAS proteins are small ubiquitin-like modifier (SUMO) E3 ligases that participate in important cellular functions. Several of these functions depend on a conserved SUMO-interacting motif (SIM) located in the central region of all PIAS proteins (SIM1). Recently, it was determined that Siz2, a yeast homolog of PIAS proteins, possesses a second SIM at its C terminus (SIM2). Sequence alignment indicates that a SIM2 is also present in PIAS1-3, but not PIAS4. Using biochemical and structural studies, we demonstrate PIAS-SIM2 binds to SUMO1, but that phosphorylation of the PIAS-SIM2 or acetylation of SUMO1 alter this interaction in a manner distinct from what is observed for the PIAS-SIM1. We also show that the PIAS-SIM2 plays a key role in formation of a UBC9-PIAS1-SUMO1 complex. These results provide insights into how post-translational modifications selectively regulate the specificity of multiple SIMs found in the PIAS proteins by exploiting the plasticity built into the SUMO-SIM binding interface.


Asunto(s)
Proteínas Inhibidoras de STAT Activados/química , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteína SUMO-1/metabolismo , Acetilación , Secuencias de Aminoácidos , Cristalografía por Rayos X , Células HEK293 , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Dominios y Motivos de Interacción de Proteínas , Serina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
13.
Biochem Biophys Res Commun ; 521(3): 681-686, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31690451

RESUMEN

The p53 protein plays a number of roles in protecting organisms from different genotoxic stresses and this includes DNA damage induced by acetaldehyde, a metabolite of alcohol. Since the common tree shrew ingests high levels of alcohol as part of its normal diet, this suggests that its p53 protein may possess unique properties. Using a combination of biophysical and modeling studies, we demonstrate that the tetramerization domain of the tree shrew p53 protein is considerably more stable than the corresponding domain from humans despite sharing almost 90% sequence identity. Based on modeling and mutagenesis studies, we determine that a glutamine to methionine substitution at position 354 plays a key role in this difference. Given the link between stability of the p53 tetramerization domain and its transcriptional activity, the results suggest that this enhanced stability could lead to important consequences at p53-regulated genes in the tree shrew.


Asunto(s)
Proteína p53 Supresora de Tumor/química , Tupaiidae , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Homología de Secuencia de Aminoácido , Temperatura , Termodinámica , Tupaiidae/metabolismo
14.
Structure ; 28(2): 157-168.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31879127

RESUMEN

The interactions between SUMO proteins and SUMO-interacting motif (SIM) in nuclear bodies formed by the promyelocytic leukemia (PML) protein (PML-NBs) have been shown to be modulated by either phosphorylation of the SIMs or acetylation of SUMO proteins. However, little is known about how this occurs at the atomic level. In this work, we examined the role that acetylation of SUMO1 plays on its binding to the phosphorylated SIMs (phosphoSIMs) of PML and Daxx. Our results demonstrate that SUMO1 binding to the phosphoSIM of either PML or Daxx is dramatically reduced by acetylation at either K39 or K46. However, acetylation at K37 only impacts binding to Daxx. Structures of acetylated SUMO1 variants bound to the phosphoSIMs of PML and Daxx demonstrate that there is structural plasticity in SUMO-SIM interactions. The plasticity observed in these structures provides a robust mechanism for regulating SUMO-SIM interactions in PML-NBs using signaling generated post-translational modifications.


Asunto(s)
Proteínas Co-Represoras/química , Proteínas Co-Represoras/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteína de la Leucemia Promielocítica/química , Proteína de la Leucemia Promielocítica/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Acetilación , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Proteína SUMO-1/genética
15.
BMC Biotechnol ; 18(1): 76, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30522464

RESUMEN

BACKGROUND: Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure. RESULTS: Transfection conditions were first optimized to achieve expression levels between 10 and 18 mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4-9 mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5 nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2 ± 0.5 min- 1) and KM (1.2 ± 0.3 µM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption. CONCLUSIONS: The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway.


Asunto(s)
ARN Helicasas DEAD-box/biosíntesis , Antígenos Nucleares del Virus de Epstein-Barr/genética , Células HEK293/metabolismo , Ribonucleasa III/biosíntesis , ARN Helicasas DEAD-box/análisis , ARN Helicasas DEAD-box/genética , Ensayo de Cambio de Movilidad Electroforética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Regulación de la Expresión Génica , Humanos , Ribonucleasa III/análisis , Ribonucleasa III/genética , Transfección
16.
FEBS Lett ; 591(16): 2491-2500, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28766702

RESUMEN

In this work, we provide evidence for the interactions between VirB8 and VirB10, two core components of the type IV secretion system (T4SS). Using nuclear magnetic resonance experiments, we identified residues on the ß1-strand of Brucella VirB8 that undergo chemical shift changes in the presence of VirB10. Bacterial two-hybrid experiments confirm the importance of the ß1-strand, whereas phage display experiments suggest that the α2-helix of VirB8 may also contribute to the interaction with VirB10. Conjugation assays using the VirB8 homolog TraE as a model show that several residues on the ß1-strand of TraE are important for T4SS function. Together, our results suggest that the ß1-strand of VirB8-like proteins is essential for their interaction with VirB10 in the T4SS complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Secuencia de Aminoácidos , Brucella/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Lámina beta
17.
Sci Rep ; 7(1): 1400, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28469202

RESUMEN

Binding affinity and specificity are crucial factors that influence nanostructure control by biomineralization peptides. In this paper, we analysed the role that the oligomeric state of a silver biomineralization peptide plays in regulating the morphology of silver nanostructure formation. Oligomerization was achieved by conjugating the silver specific TBP biomineralization peptide to the p53 tetramerization domain peptide (p53Tet). Interestingly, the TBP-p53Tet tetrameric peptide acted as a growth catalyst, controlling silver crystal growth, which resulted in the formation of hexagonal silver nanoplates without consuming the peptide. The TBP-p53Tet peptide caps the surface of the silver crystals, which enhances crystal growth on specific faces and thereby regulates silver nanostructure formation in a catalytic fashion. The present findings not only provide an efficient strategy for controlling silver nanostructure formation by biomineralization peptides, but they also demonstrate that in this case the oligomeric peptides play a unique catalytic role.

18.
Nucleic Acids Res ; 45(9): 5564-5576, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28334776

RESUMEN

p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.


Asunto(s)
Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Secuencias de Aminoácidos , Sitios de Unión , Calorimetría , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Transcripción Genética
19.
FEBS J ; 284(8): 1218-1232, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28236662

RESUMEN

Secretion systems are protein complexes essential for bacterial virulence and potential targets for antivirulence drugs. In the intracellular pathogen Brucella suis, a type IV secretion system mediates the translocation of virulence factors into host cells and it is essential for pathogenicity. VirB8 is a core component of the secretion system and dimerization is important for functionality of the protein complex. We set out to study dimerization and possible conformational changes of VirB8 from B. suis (VirB8s) using nuclear magnetic resonance, X-ray crystallography, and differential scanning fluorimetry. We identified changes of the protein induced by a concentration-dependent monomer-to-dimer transition of the periplasmic domain (VirB8sp). We also show that the presence of the detergent CHAPS alters several signals in the heteronuclear single quantum coherence (HSQC) spectra and some of these chemical shift changes correspond to those observed during monomer-dimer transition. X-ray analysis of a monomeric variant (VirB8spM102R ) demonstrates that significant structural changes occur in the protein's α-helical regions (α2 and α4). We localized chemical shift changes of residues at the dimer interface as well as to the α1 helix that links this interface to a surface groove that binds dimerization inhibitors. Fragment-based screening identified small molecules that bind to VirB8sp and two of them have differential binding affinity for wild-type and the VirB8spM102R variant underlining their different conformations. The observed chemical shift changes suggest conformational changes of VirB8s during monomer-dimer transition that may play a role during secretion system assembly or function and they provide insights into the mechanism of inhibitor action. DATABASE: BMRB accession no. 26852 and PDB 5JBS.


Asunto(s)
Proteínas Bacterianas/química , Brucella suis/metabolismo , Sistemas de Secreción Tipo IV/química , Cristalografía por Rayos X , Dimerización , Fluorometría , Micelas , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Periplasma/química , Conformación Proteica
20.
J Biol Chem ; 292(15): 6325-6338, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28235806

RESUMEN

The ligase Itch plays major roles in signaling pathways by inducing ubiquitylation-dependent degradation of several substrates. Substrate recognition and binding are critical for the regulation of this reaction. Like closely related ligases, Itch can interact with proteins containing a PPXY motif via its WW domains. In addition to these WW domains, Itch possesses a proline-rich region (PRR) that has been shown to interact with several Src homology 3 (SH3) domain-containing proteins. We have previously established that despite the apparent surface uniformity and conserved fold of SH3 domains, they display different binding mechanisms and affinities for their interaction with the PRR of Itch. Here, we attempt to determine the molecular bases underlying the wide range of binding properties of the Itch PRR. Using pulldown assays combined with mass spectrometry analysis, we show that the Itch PRR preferentially forms complexes with endophilins, amphyphisins, and pacsins but can also target a variety of other SH3 domain-containing proteins. In addition, we map the binding sites of these proteins using a combination of PRR sub-sequences and mutants. We find that different SH3 domains target distinct proline-rich sequences overlapping significantly. We also structurally analyze these protein complexes using crystallography and molecular modeling. These structures depict the position of Itch PRR engaged in a 1:2 protein complex with ß-PIX and a 1:1 complex with the other SH3 domain-containing proteins. Taken together, these results reveal the binding preferences of the Itch PRR toward its most common SH3 domain-containing partners and demonstrate that the PRR region is sufficient for binding.


Asunto(s)
Modelos Moleculares , Proteínas Represoras/química , Ubiquitina-Proteína Ligasas/química , Dominios Homologos src , Células HEK293 , Humanos , Unión Proteica/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...