Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Nucl Med ; 65(9): 1481-1488, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39089813

RESUMEN

Immunotherapies, especially checkpoint inhibitors such as anti-programmed cell death protein 1 (anti-PD-1) antibodies, have transformed cancer treatment by enhancing the immune system's capability to target and kill cancer cells. However, predicting immunotherapy response remains challenging. 18F-arabinosyl guanine ([18F]F-AraG) is a molecular imaging tracer targeting activated T cells, which may facilitate therapy response assessment by noninvasive quantification of immune cell activity within the tumor microenvironment and elsewhere in the body. The aim of this study was to obtain preliminary data on total-body pharmacokinetics of [18F]F-AraG as a potential quantitative biomarker for immune response evaluation. Methods: The study consisted of 90-min total-body dynamic scans of 4 healthy subjects and 1 non-small cell lung cancer patient who was scanned before and after anti-PD-1 immunotherapy. Compartmental modeling with Akaike information criterion model selection was used to analyze tracer kinetics in various organs. Additionally, 7 subregions of the primary lung tumor and 4 mediastinal lymph nodes were analyzed. Practical identifiability analysis was performed to assess the reliability of kinetic parameter estimation. Correlations of the SUVmean, the tissue-to-blood SUV ratio (SUVR), and the Logan plot slope (K Logan) with the total volume of distribution (V T) were calculated to identify potential surrogates for kinetic modeling. Results: Strong correlations were observed between K Logan and SUVR with V T, suggesting that they can be used as promising surrogates for V T, especially in organs with a low blood-volume fraction. Moreover, practical identifiability analysis suggested that dynamic [18F]F-AraG PET scans could potentially be shortened to 60 min, while maintaining quantification accuracy for all organs of interest. The study suggests that although [18F]F-AraG SUV images can provide insights on immune cell distribution, kinetic modeling or graphical analysis methods may be required for accurate quantification of immune response after therapy. Although SUVmean showed variable changes in different subregions of the tumor after therapy, the SUVR, K Logan, and V T showed consistent increasing trends in all analyzed subregions of the tumor with high practical identifiability. Conclusion: Our findings highlight the promise of [18F]F-AraG dynamic imaging as a noninvasive biomarker for quantifying the immune response to immunotherapy in cancer patients. Promising total-body kinetic modeling results also suggest potentially wider applications of the tracer in investigating the role of T cells in the immunopathogenesis of diseases.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Receptor de Muerte Celular Programada 1 , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Cinética , Masculino , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Imagen de Cuerpo Entero , Femenino , Modelos Biológicos , Persona de Mediana Edad , Adulto , Anciano , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
J Nucl Med ; 65(8): 1320-1326, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871391

RESUMEN

The collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.5 cm) to enhance sensitivity. Here, we present the physical characterization, performance evaluation, and first human images of the NeuroEXPLORER. Methods: Measurements of spatial resolution, sensitivity, count rate performance, energy and timing resolution, and image quality were performed adhering to the National Electrical Manufacturers Association (NEMA) NU 2-2018 standard. The system's performance was demonstrated through imaging studies of the Hoffman 3-dimensional brain phantom and the mini-Derenzo phantom. Initial 18F-FDG images from a healthy volunteer are presented. Results: With filtered backprojection reconstruction, the radial and tangential spatial resolutions (full width at half maximum) averaged 1.64, 2.06, and 2.51 mm, with axial resolutions of 2.73, 2.89, and 2.93 mm for radial offsets of 1, 10, and 20 cm, respectively. The average time-of-flight resolution was 236 ps, and the energy resolution was 10.5%. NEMA sensitivities were 46.0 and 47.6 kcps/MBq at the center and 10-cm offset, respectively. A sensitivity of 11.8% was achieved at the FOV center. The peak noise-equivalent count rate was 1.31 Mcps at 58.0 kBq/mL, and the scatter fraction at 5.3 kBq/mL was 36.5%. The maximum count rate error at the peak noise-equivalent count rate was less than 5%. At 3 iterations, the NEMA image-quality contrast recovery coefficients varied from 74.5% (10-mm sphere) to 92.6% (37-mm sphere), and background variability ranged from 3.1% to 1.4% at a contrast of 4.0:1. An example human brain 18F-FDG image exhibited very high resolution, capturing intricate details in the cortex and subcortical structures. Conclusion: The NeuroEXPLORER offers high sensitivity and high spatial resolution. With its long axial length, it also enables high-quality spinal cord imaging and image-derived input functions from the carotid arteries. These performance enhancements will substantially broaden the range of human brain PET paradigms, protocols, and thereby clinical research applications.


Asunto(s)
Encéfalo , Fantasmas de Imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Encéfalo/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Procesamiento de Imagen Asistido por Computador , Fluorodesoxiglucosa F18
3.
J Nucl Med ; 65(7): 1101-1106, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38664017

RESUMEN

Our aim was to define a lower limit of reduced injected activity in delayed [18F]FDG total-body (TB) PET/CT in pediatric oncology patients. Methods: In this single-center prospective study, children were scanned for 20 min with TB PET/CT, 120 min after intravenous administration of a 4.07 ± 0.49 MBq/kg dose of [18F]FDG. Five randomly subsampled low-count reconstructions were generated using », ⅛, [Formula: see text], and [Formula: see text] of the counts in the full-dose list-mode reference standard acquisition (20 min), to simulate dose reduction. For the 2 lowest-count reconstructions, smoothing was applied. Background uptake was measured with volumes of interest placed on the ascending aorta, right liver lobe, and third lumbar vertebra body (L3). Tumor lesions were segmented using a 40% isocontour volume-of-interest approach. Signal-to-noise ratio, tumor-to-background ratio, and contrast-to-noise ratio were calculated. Three physicians identified malignant lesions independently and assessed the image quality using a 5-point Likert scale. Results: In total, 113 malignant lesions were identified in 18 patients, who met the inclusion criteria. Of these lesions, 87.6% were quantifiable. Liver SUVmean did not change significantly, whereas a lower signal-to-noise ratio was observed in all low-count reconstructions compared with the reference standard (P < 0.0001) because of higher noise rates. Tumor uptake (SUVmax), tumor-to-background ratio, and total lesion count were significantly lower in the reconstructions with [Formula: see text] and [Formula: see text] of the counts of the reference standard (P < 0.001). Contrast-to-noise ratio and clinical image quality were significantly lower in all low-count reconstructions than with the reference standard. Conclusion: Dose reduction for delayed [18F]FDG TB PET/CT imaging in children is possible without loss of image quality or lesion conspicuity. However, our results indicate that to maintain comparable tumor uptake and lesion conspicuity, PET centers should not reduce the injected [18F]FDG activity below 0.5 MBq/kg when using TB PET/CT in pediatric imaging at 120 min after injection.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Dosis de Radiación , Imagen de Cuerpo Entero , Humanos , Niño , Femenino , Masculino , Neoplasias/diagnóstico por imagen , Adolescente , Preescolar , Estudios Prospectivos , Radiofármacos , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador , Factores de Tiempo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38500666

RESUMEN

Dual-energy computed tomography (DECT) enables material decomposition for tissues and produces additional information for PET/CT imaging to potentially improve the characterization of diseases. PET-enabled DECT (PDECT) allows the generation of PET and DECT images simultaneously with a conventional PET/CT scanner without the need for a second x-ray CT scan. In PDECT, high-energy γ-ray CT (GCT) images at 511 keV are obtained from time-of-flight (TOF) PET data and are combined with the existing x-ray CT images to form DECT imaging. We have developed a kernel-based maximum-likelihood attenuation and activity (MLAA) method that uses x-ray CT images as a priori information for noise suppression. However, our previous studies focused on GCT image reconstruction at the PET image resolution which is coarser than the image resolution of the x-ray CT. In this work, we explored the feasibility of generating super-resolution GCT images at the corresponding CT resolution. The study was conducted using both phantom and patient scans acquired with the uEXPLORER total-body PET/CT system. GCT images at the PET resolution with a pixel size of 4.0 mm × 4.0 mm and at the CT resolution with a pixel size of 1.2 mm × 1.2 mm were reconstructed using both the standard MLAA and kernel MLAA methods. The results indicated that the GCT images at the CT resolution had sharper edges and revealed more structural details compared to the images reconstructed at the PET resolution. Furthermore, images from the kernel MLAA method showed substantially improved image quality compared to those obtained with the standard MLAA method.

5.
ArXiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38351944

RESUMEN

X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition.

6.
Phys Med Biol ; 69(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38266297

RESUMEN

Objective.This study presents and evaluates a robust Monte Carlo-based scatter correction (SC) method for long axial field of view (FOV) and total-body positron emission tomography (PET) using the uEXPLORER total-body PET/CT scanner.Approach.Our algorithm utilizes the Monte Carlo (MC) tool SimSET to compute SC factors in between individual image reconstruction iterations within our in-house list-mode and time-of-flight-based image reconstruction framework. We also introduced a unique scatter scaling technique at the detector block-level for optimal estimation of the scatter contribution in each line of response. First image evaluations were derived from phantom data spanning the entire axial FOV along with image data from a human subject with a large body mass index. Data was evaluated based on qualitative inspections, and contrast recovery, background variability, residual scatter removal from cold regions, biases and axial uniformity were quantified and compared to non-scatter-corrected images.Main results.All reconstructed images demonstrated qualitative and quantitative improvements compared to non-scatter-corrected images: contrast recovery coefficients improved by up to 17.2% and background variability was reduced by up to 34.3%, and the residual lung error was between 1.26% and 2.08%. Low biases throughout the axial FOV indicate high quantitative accuracy and axial uniformity of the corrections. Up to 99% of residual activity in cold areas in the human subject was removed, and the reliability of the method was demonstrated in challenging body regions like in the proximity of a highly attenuating knee prosthesis.Significance.The MC SC method employed was demonstrated to be accurate and robust in TB-PET. The results of this study can serve as a benchmark for optimizing the quantitative performance of future SC techniques.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Humanos , Reproducibilidad de los Resultados , Dispersión de Radiación , Tomografía de Emisión de Positrones/métodos , Algoritmos , Método de Montecarlo , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
7.
Phys Med Biol ; 68(21)2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37802064

RESUMEN

Objective.Contrast recovery coefficient (CRC) is essential for image quality (IQ) assessment in positron emission tomography (PET), typically measured according to the National Electrical Manufacturers Association (NEMA) NU 2 standard. This study quantifies systematic uncertainties of the CRC measurement by a numerical investigation of the effects from scanner-independent parameters like voxel size, region-of-interest (ROI) misplacement, and sphere position on the underlying image grid.Approach.CRC measurements with 2D and 3D ROIs were performed on computer-generated images of a NEMA IQ-like phantom, using voxel sizes of 1-4 mm for sphere diameters of 5-40 mm-first in absence of noise and blurring, then with simulated spatial resolution and image noise with varying noise levels. The systematic uncertainties of the CRC measurement were quantified from above variations of scanner-independent parameters. Subsampled experimental images of a NEMA IQ phantom were additionally used to investigate the impact of ROI misplacement at different noise levels.Main results.In absence of noise and blurring, systematic uncertainties were up to 28.8% and 31.0% with 2D and 3D ROIs, respectively, for the 10 mm sphere, with the highest impact from ROI misplacement. In all cases, smaller spheres showed higher uncertainties with larger voxels. Contrary to prior assumptions, the use of 3D ROIs did not exhibit less susceptibility for parameter changes. Experimental and computer-generated images both demonstrated considerable variations on individual CRC measurements when background coefficient-of-variation exceeded 20%, despite negligible effects on mean CRC.Significance.This study underscores the effect of scanner-independent parameters on reliability, reproducibility, and comparability of CRC measurements. Our findings highlight the trade-off between the benefits of smaller voxel sizes and noise-induced CRC fluctuations, which is not considered in the current version of the NEMA IQ standards. The results furthermore warrant adjustments to the standard to accommodate the advances in sensitivity and spatial resolution of current-generation PET scanners.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos , Tomografía de Emisión de Positrones/métodos , Estándares de Referencia , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador
8.
Sci Adv ; 9(41): eadh7968, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824612

RESUMEN

With most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell biodistribution in humans. A 89Zr-labeled CD8-targeted minibody (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals (N = 3) and coronavirus disease 2019 (COVID-19) convalescent patients (N = 5). Kinetic modeling results aligned with T cell-trafficking effects expected in lymphoid organs. Tissue-to-blood ratios from the first 7 hours of imaging were higher in bone marrow of COVID-19 convalescent patients compared to controls, with an increasing trend between 2 and 6 months after infection, consistent with modeled net influx rates and peripheral blood flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory.


Asunto(s)
COVID-19 , Humanos , Distribución Tisular , COVID-19/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Linfocitos T CD8-positivos , Circonio , Línea Celular Tumoral
9.
medRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37790461

RESUMEN

Immunotherapies, especially the checkpoint inhibitors such as anti-PD-1 antibodies, have transformed cancer treatment by enhancing immune system's capability to target and kill cancer cells. However, predicting immunotherapy response remains challenging. 18F-AraG is a molecular imaging tracer targeting activated T cells, which may facilitate therapy response assessment by non-invasive quantification of immune cell activity within tumor microenvironment and elsewhere in the body. The aim of this study was to obtain preliminary data on total-body pharmacokinetics of 18F-AraG, as a potential quantitative biomarker for immune response evaluation. Methods: The study consisted of 90-min total-body dynamic scans of four healthy subjects and one non-small cell lung cancer (NSCLC) patient, scanned before and after anti-PD-1 immunotherapy. Compartmental modeling with Akaike information criterion model selection were employed to analyze tracer kinetics in various organs. Additionally, seven sub-regions of the primary lung tumor and four mediastinal lymph nodes were analyzed. Practical identifiability analysis was performed to assess reliability of kinetic parameter estimation. Correlations of SUVmean, SUVR (tissue-to-blood ratio), and Logan plot slope KLogan with total volume-of-distribution VT were calculated to identify potential surrogates for kinetic modeling. Results: Strong correlations were observed between KLogan and SUVR values with VT, suggesting that they can be used as promising surrogates for VT, especially in organs with low blood-volume fraction. Moreover, the practical identifiability analysis suggests that the dynamic 18F-AraG PET scans could potentially be shortened to 60 minutes, while maintaining quantification accuracy for all organs-of-interest. The study suggests that although 18F-AraG SUV images can provide insights on immune cell distribution, kinetic modeling or graphical analysis methods may be required for accurate quantification of immune response post-therapy. While SUVmean showed variable changes in different sub-regions of the tumor post-therapy, the SUVR, KLogan, and VT showed consistent increasing trends in all analyzed sub-regions of the tumor with high practical identifiability. Conclusion: Our findings highlight the promise of 18F-AraG dynamic imaging as a non-invasive biomarker for quantifying the immune response to immunotherapy in cancer patients. The promising total-body kinetic modeling results also suggest potentially wider applications of the tracer in investigating the role of T cells in the immunopathogenesis of diseases.

10.
J Nucl Med ; 64(11): 1821-1830, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37591539

RESUMEN

Conventional whole-body static 18F-FDG PET imaging provides a semiquantitative evaluation of overall glucose metabolism without insight into the specific transport and metabolic steps. Here we demonstrate the ability of total-body multiparametric 18F-FDG PET to quantitatively evaluate glucose metabolism using macroparametric quantification and assess specific glucose delivery and phosphorylation processes using microparametric quantification for studying recovery from coronavirus disease 2019 (COVID-19). Methods: The study included 13 healthy subjects and 12 recovering COVID-19 subjects within 8 wk of confirmed diagnosis. Each subject had a 1-h dynamic 18F-FDG scan on the uEXPLORER total-body PET/CT system. Semiquantitative SUV and the SUV ratio relative to blood (SUVR) were calculated for different organs to measure glucose utilization. Tracer kinetic modeling was performed to quantify the microparametric blood-to-tissue 18F-FDG delivery rate [Formula: see text] and the phosphorylation rate k 3, as well as the macroparametric 18F-FDG net influx rate ([Formula: see text]). Statistical tests were performed to examine differences between healthy subjects and recovering COVID-19 subjects. The effect of COVID-19 vaccination was also investigated. Results: We detected no significant difference in lung SUV but significantly higher lung SUVR and [Formula: see text] in COVID-19 recovery, indicating improved sensitivity of kinetic quantification for detecting the difference in glucose metabolism. A significant difference was also observed in the lungs with the phosphorylation rate k 3 but not with [Formula: see text], which suggests that glucose phosphorylation, rather than glucose delivery, drives the observed difference of glucose metabolism. Meanwhile, there was no or little difference in bone marrow 18F-FDG metabolism measured with SUV, SUVR, and [Formula: see text] but a significantly higher bone marrow [Formula: see text] in the COVID-19 group, suggesting a difference in glucose delivery. Vaccinated COVID-19 subjects had a lower lung [Formula: see text] and a higher spleen [Formula: see text] than unvaccinated COVID-19 subjects. Conclusion: Higher lung glucose metabolism and bone marrow glucose delivery were observed with total-body multiparametric 18F-FDG PET in recovering COVID-19 subjects than in healthy subjects, implying continued inflammation during recovery. Vaccination demonstrated potential protection effects. Total-body multiparametric PET of 18F-FDG can provide a more sensitive tool and more insights than conventional whole-body static 18F-FDG imaging to evaluate metabolic changes in systemic diseases such as COVID-19.


Asunto(s)
COVID-19 , Fluorodesoxiglucosa F18 , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Vacunas contra la COVID-19 , COVID-19/diagnóstico por imagen , Glucosa , Tomografía de Emisión de Positrones/métodos
11.
medRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37034643

RESUMEN

Conventional whole-body 18 F-FDG PET imaging provides a semi-quantitative evaluation of overall glucose metabolism without gaining insight into the specific transport and metabolic steps. Here we demonstrate the ability of total-body multiparametric 18 F-FDG PET to quantitatively evaluate glucose metabolism using macroparametric quantification and assess specific glucose delivery and phosphorylation processes using microparametric quantification for studying recovery from coronavirus disease 2019 (COVID-19). Methods: The study included thirteen healthy subjects and twelve recovering COVID-19 subjects within eight weeks of confirmed diagnosis. Each subject had a dynamic 18 F-FDG scan on the uEXPLORER total-body PET/CT system for one hour. Semiquantitative standardized uptake value (SUV) and SUV ratio relative to blood (SUVR) were calculated for regions of interest (ROIs) in different organs to measure glucose utilization. Tracer kinetic modeling was performed to quantify microparametric rate constants K 1 and k 3 that characterize 18 F-FDG blood-to-tissue delivery and intracellular phosphorylation, respectively, and a macroparameter K i that represents 18 F-FDG net influx rate. Statistical tests were performed to examine differences between the healthy controls and recovering COVID-19 subjects. Impact of COVID-19 vaccination was investigated. We further generated parametric images to confirm the ROI-based analysis. Results: We detected no significant difference in lung SUV but significantly higher lung SUVR and K i in the recovering COVID-19 subjects, indicating an improved sensitivity of kinetic quantification for detecting the difference in glucose metabolism. A significant difference was also observed in the lungs with the phosphorylation rate k 3 , but not with the delivery rate K 1 , which suggests it is glucose phosphorylation, not glucose delivery, that drives the observed difference of glucose metabolism in the lungs. Meanwhile, there was no or little difference in bone marrow metabolism measured with SUV, SUVR and K i , but a significant increase in bone-marrow 18 F-FDG delivery rate K 1 in the COVID-19 group ( p < 0.05), revealing a difference of glucose delivery in this immune-related organ. The observed differences were lower or similar in vaccinated COVID-19 subjects as compared to unvaccinated ones. The organ ROI-based findings were further supported by parametric images. Conclusions: Higher lung glucose metabolism and bone-marrow glucose delivery were observed with total-body multiparametric 18 F-FDG PET in recovering COVID-19 subjects as compared to healthy subjects, which suggests continued inflammation due to COVID-19 during the early stages of recovery. Total-body multiparametric PET of 18 F-FDG delivery and metabolism can provide a more sensitive tool and more insights than conventional static whole-body 18 F-FDG imaging to evaluate metabolic changes in systemic diseases such as COVID-19.

12.
medRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993568

RESUMEN

With the majority of CD8+ T cells residing and functioning in tissue, not blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics in humans offers the means for studying their key role in adaptive immune response and memory. This study is the first report on using positron emission tomography (PET) dynamic imaging and compartmental kinetic modeling for in vivo measurement of whole-body biodistribution of CD8+ T cells in human subjects. For this, a 89Zr-labeled minibody with high affinity for human CD8 (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy subjects (N=3) and in COVID-19 convalescent patients (N=5). The high detection sensitivity, total-body coverage, and the use of dynamic scans enabled the study of kinetics simultaneously in spleen, bone marrow, liver, lungs, thymus, lymph nodes, and tonsils, at reduced radiation doses compared to prior studies. Analysis and modeling of the kinetics was consistent with T cell trafficking effects expected from immunobiology of lymphoid organs, suggesting early uptake in spleen and bone marrow followed by redistribution and delayed increasing uptake in lymph nodes, tonsils, and thymus. Tissue-to-blood ratios from the first 7 h of CD8-targeted imaging showed significantly higher values in the bone marrow of COVID-19 patients compared to controls, with an increasing trend between 2 and 6 months post-infection, consistent with net influx rates obtained by kinetic modeling and flow cytometry analysis of peripheral blood samples. These results provide the platform for using dynamic PET scans and kinetic modelling to study total-body immunological response and memory.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36172601

RESUMEN

The current generation of total-body positron emission tomography (PET) scanners offer significant sensitivity increase with an extended axial imaging extent. With the large volume of lutetium-based scintillation crystals that are used as detector elements in these scanners, there is an increased flux of background radiation originating from 176Lu decay in the crystals and higher sensitivity for detecting it. Combined with the ability of scanning the entire body in a single bed position, this allows more effective utilization of the lutetium background as a transmission source for estimating 511 keV attenuation coefficients. In this study, utilization of the lutetium background radiation for attenuation correction in total-body PET was studied using Monte Carlo simulations of a 3D whole-body XCAT phantom in the uEXPLORER PET scanner, with particular focus on ultralow-dose PET scans that are now made possible with these scanners. Effects of an increased acceptance angle, reduced scan durations, and Compton scattering on PET quantification were studied. Furthermore, quantification accuracy of lutetium-based attenuation correction was compared for a 20-min scan of the whole body on the uEXPLORER, a one-meter-long, and a conventional 24-cm-long scanner. Quantification and lesion contrast were minimally affected in both long axial field-of-view scanners and in a whole-body 20-min scan, the mean bias in all analyzed organs of interest were within a ±10% range compared to ground-truth activity maps. Quantification was affected in certain organs, when scan duration was reduced to 5 min or a reduced acceptance angle of 17° was used. Analysis of the Compton scattered events suggests that implementing a scatter correction method for the transmission data will be required, and increasing the energy threshold from 250 keV to 290 keV can reduce the computational costs and data rates, with negligible effects on PET quantification. Finally, the current results can serve as groundwork for transferring lutetium-based attenuation correction into research and clinical practice.

14.
Phys Med Biol ; 67(12)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35609588

RESUMEN

Objective.This work assessed the relationship between image signal-to-noise ratio (SNR) and total-body noise-equivalent count rate (NECR)-for both non-time-of-flight (TOF) NECR and TOF-NECR-in a long uniform water cylinder and 14 healthy human subjects using the uEXPLORER total-body PET/CT scanner.Approach.A TOF-NEC expression was modified for list-mode PET data, and both the non-TOF NECR and TOF-NECR were compared using datasets from a long uniform water cylinder and 14 human subjects scanned up to 12 h after radiotracer injection.Main results.The TOF-NECR for the uniform water cylinder was found to be linearly proportional to the TOF-reconstructed image SNR2in the range of radioactivity concentrations studied, but not for non-TOF NECR as indicated by the reducedR2value. The results suggest that the use of TOF-NECR to estimate the count rate performance of TOF-enabled PET systems may be more appropriate for predicting the SNR of TOF-reconstructed images.Significance.Image quality in PET is commonly characterized by image SNR and, correspondingly, the NECR. While the use of NECR for predicting image quality in conventional PET systems is well-studied, the relationship between SNR and NECR has not been examined in detail in long axial field-of-view total-body PET systems, especially for human subjects. Furthermore, the current NEMA NU 2-2018 standard does not account for count rate performance gains due to TOF in the NECR evaluation. The relationship between image SNR and total-body NECR in long axial FOV PET was assessed for the first time using the uEXPLORER total-body PET/CT scanner.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Relación Señal-Ruido , Agua
15.
Front Cardiovasc Med ; 9: 889963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548425

RESUMEN

Introduction and Objectives: Wound healing after myocardial infarction (MI) is a dynamic and complex multiple phase process, and a coordinated cellular response is required for proper scar formation. The current paradigm suggests that pro-inflammatory monocytes infiltrate the MI zone during the initial pro-inflammatory phase and differentiate into inflammatory macrophages, and then switch their phenotypes to anti-inflammatory during the reparative phase. Visualization of the reparative phase post-MI is of great interest because it may reveal delayed resolution of inflammation, which in turn predicts adverse cardiac remodeling. Imaging of anti-inflammatory macrophages may also be used to assess therapy approaches aiming to modulate the inflammatory response in order to limit MI size. Reparative macrophages can be distinguished from inflammatory macrophages by the surface marker mannose receptor (MR, CD206). In this study we evaluated the feasibility of 68Ga-NOTA-anti-MMR Nb for imaging of MR on alternatively activated macrophages in murine MI models. Methods: Wildtype and MR-knockout mice and Wistar rats were subjected to MI via permanent ligation of the left coronary artery. Non-operated or sham-operated animals were used as controls. MR expression kinetics on cardiac macrophages was measured in mice using flow cytometry. PET/CT scans were performed 1 h after intravenous injection of 68Ga-NOTA-anti-MMR Nb. Mice and rats were euthanized and hearts harvested for ex vivo PET/MRI, autoradiography, and staining. As a non-targeting negative control, 68Ga-NOTA-BCII10 was used. Results: In vivo-PET/CT scans showed focal radioactivity signals in the infarcted myocardium for 68Ga-NOTA-anti-MMR Nb which were confirmed by ex vivo-PET/MRI scans. In autoradiography images, augmented uptake of the tracer was observed in infarcts, as verified by the histochemistry analysis. Immunofluorescence staining demonstrated the presence and co-localization of CD206- and CD68-positive cells, in accordance to infarct zone. No in vivo or ex vivo signal was observed in the animals injected with control Nb or in the sham-operated animals. 68Ga-NOTA-anti-MMR Nb uptake in the infarcts of MR-knockout mice was negligibly low, confirming the specificity of 68Ga-NOTA-anti-MMR Nb to MR. Conclusion: This exploratory study highlights the potential of 68Ga-NOTA-anti-MMR Nb to image MR-positive macrophages that are known to play a pivotal role in wound healing that follows acute MI.

16.
J Nucl Med ; 63(10): 1579-1585, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35589405

RESUMEN

Autoimmune inflammatory arthritides (AIA), such as psoriatic arthritis and rheumatoid arthritis, are chronic systemic conditions that affect multiple joints of the body. Recently, total-body (TB) PET/CT scanners exhibiting superior technical characteristics (total-body coverage, geometric sensitivity) that could benefit AIA evaluation, compared with conventional PET/CT systems, have become available. The objectives of this work were to assess the performance of an ultra-low-dose, 18F-FDG TB PET/CT acquisition protocol for evaluating systemic joint involvement in AIA and to report the association of TB PET/CT measures with joint-by-joint rheumatologic examination and standardized rheumatologic outcome measures. Methods: Thirty participants (24 with AIA and 6 with osteoarthritis) were prospectively enrolled in this single-center, observational study. All participants underwent a TB PET/CT scan for 20 min starting at 40 min after intravenous injection of 78.1 ± 4.7 MBq of 18F-FDG. Qualitative and quantitative evaluation of 18F-FDG uptake and joint involvement were performed from the resulting images and compared with the rheumatologic assessments. Results: TB PET/CT enabled the visualization of 18F-FDG uptake at joints of the entire body, including those of the hands and feet, in a single bed position, and in the same phase of radiotracer uptake. A range of pathologies consistent with AIA (and non-AIA in the osteoarthritis group) were visualized, and the feasibility of extracting PET measures from joints examined by rheumatologic assessments was demonstrated. Of 1,997 evaluable joints, there was concordance between TB PET qualitative assessments and joint-by-joint rheumatologic evaluation in the AIA and non-AIA cohorts for 69.9% and 91.1% joints, respectively, and an additional 20.1% and 8.8% joints, respectively, deemed negative on rheumatologic examination showed PET positivity. On the other hand, 10.0% and 0% joints in the AIA and non-AIA cohorts, respectively, were positive on rheumatologic evaluation but negative on TB PET. Quantitative measures from TB PET in the AIA cohort demonstrated a moderate-to-strong correlation (Spearman ρ = 0.53-0.70, P < 0.05) with the rheumatologic outcome measures. Conclusion: Systemic joint evaluation in AIA (and non-AIA) is feasible with a TB PET/CT system and an ultra-low-dose protocol. Our results provide the foundation for future larger studies to evaluate the possible improvements in AIA joint assessment via the TB PET/CT technology.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/patología , Fluorodesoxiglucosa F18 , Humanos , Osteoartritis/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X
17.
Semin Nucl Med ; 52(3): 330-339, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35272853

RESUMEN

Total-body PET has come a long way from its first conception to today, with both total-body and long axial field of view (> 1m) scanners now being commercially available world-wide. The conspicuous signal collection efficiency gain, coupled with high spatial resolution, allows for higher sensitivity and improved lesion detection, enhancing several clinical applications not readily available on current conventional PET/CT scanners. This technology can provide (a) reduction in acquisition times with preservation of diagnostic quality images, benefitting specific clinical situations (i.e. pediatric patients) and the use of several existing radiotracers that present transient uptake over time and where small differences in acquisition time can greatly impact interpretation of images; (b) reduction in administered activity with minimal impact on image noise, thus reducing effective dose to the patient, improving staff safety, and helping with logistical concerns for short-lived radionuclides or long-lived radionuclides with poor dosimetry profiles that have had limited use on conventional PET scanners until now; (c) delayed scanning, that has shown to increase the detection of even small and previously occult malignant lesions by improved clearance in regions of significant background activity and by reduced visibility of coexisting inflammatory processes; (d) improvement in image quality, as a consequence of higher spatial resolution and sensitivity of total-body scanners, implying better appreciation of small structures and clinical implications with downstream prognostic consequences for patients; (e) simultaneous total-body dynamic imaging, that allows the measurement of full spatiotemporal distribution of radiotracers, kinetic modeling, and creation of multiparametric images, providing physiologic and biologically relevant data of the entire body at the same time. On the other hand, the higher physical and clinical sensitivity of total-body scanners bring along some limitations and challenges. The strong impact on clinical sensitivity potentially increases the number of false positive findings if the radiologist does not recalibrate interpretation considering the new technique. Delayed scanning causes logistical issues and introduces new interpretation questions for radiologists. Data storage capacity, longer processing and reconstruction time issues are other limitations, but they may be overcome in the near future by advancements in reconstruction algorithms and computing hardware.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Niño , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos
18.
J Nucl Med ; 63(7): 1101-1107, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34795015

RESUMEN

Transarterial radioembolization (TARE) is a locoregional radiopharmaceutical therapy based on the delivery of radioactive 90Y microspheres to liver tumors. The importance of personalized dosimetry to make TARE safer and more effective has been demonstrated in recent clinical studies, stressing the need for quantification of the dose-response relationship to ultimately optimize the administered activity before treatment and image it after treatment. 90Y dosimetric studies are challenging because of the lack of accurate and precise methods but are best realized with PET combined with Monte Carlo simulations and other image modalities to calculate a segmental dose distribution. The aim of this study was to assess the suitability of imaging 90Y PET patients with the total-body PET/CT uEXPLORER and to investigate possible improvements in TARE 90Y PET-based dosimetry. The uEXPLORER is the first commercially available ultra-high-resolution (171 cps/kBq) total-body digital PET/CT device with a 194-cm axial PET field of view that enables the whole body to be scanned at a single bed position. Methods: Two PET/CT scanners were evaluated in this study: the Biograph mCT and the total-body uEXPLORER. Images of a National Electrical Manufacturers Association (NEMA) image-quality phantom and 2 patients were reconstructed using our standard clinical oncology protocol. A late portal phase contrast-enhanced CT scan was used to contour the liver segments and create corresponding volumes of interest. To calculate the absorbed dose, Monte Carlo simulations were performed using Geant4 Application for Tomographic Emission (GATE). The absorbed dose and dose-volume histograms were calculated for all 6 spheres (diameters ranging from 10 to 37 mm) of the NEMA phantom, the liver segments, and the entire liver. Differences between the phantom doses and an analytic ground truth were quantified through the root mean squared error. Results: The uEXPLORER showed a higher signal-to-noise ratio at 10- and 13-mm diameters, consistent with its high spatial resolution and system sensitivity. The total liver-absorbed dose showed excellent agreement between the uEXPLORER and the mCT for both patients, with differences lower than 0.2%. Larger differences of up to 60% were observed when comparing the liver segment doses. All dose-volume histograms were in good agreement, with narrower tails for the uEXPLORER in all segments, indicating lower image noise. Conclusion: This patient study is compelling for the use of total-body 90Y PET for liver dosimetry. The uEXPLORER scanner showed a better signal-to-noise ratio than mCT, especially in lower-count regions of interest, which is expected to improve dose quantification and tumor dosimetry.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Itrio , Humanos , Método de Montecarlo , Fantasmas de Imagen , Radiometría/métodos , Radioisótopos de Itrio/uso terapéutico
19.
Phys Med Biol ; 66(20)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34544074

RESUMEN

Absolute quantification of regional tissue concentration of radioactivity in positron emission tomography (PET) is a critical parameter-of-interest across various clinical and research applications and is affected by a complex interplay of factors including scanner calibration, data corrections, and image reconstruction. The emergence of long axial field-of-view (FOV) PET systems widens the dynamic range accessible to PET and creates new opportunities in reducing scan time and radiation dose, delayed or low radioactivity imaging, as well as kinetic modeling of the entire human. However, these imaging regimes impose challenging conditions for accurate quantification due to constraints from image reconstruction, low count conditions, as well as large and rapidly changing radioactivity distribution across a large axial FOV. We comprehensively evaluated the quantitative accuracy of the uEXPLORER total-body scanner in conditions that encompass existing and potential imaging applications (such as dynamic imaging and ultralow-dose imaging) using a set of total-body specific phantom and human measurements. Through these evaluations we demonstrated a relative count rate accuracy of ±3%-4% using the NEMA NU 2-2018 protocol, an axial uniformity spread of ±3% across the central 90% axial FOV, and a 3% activity bias spread from 17 to 474 MBq18F-FDG in a 210 cm long cylindrical phantom. Region-of-interest quantification spread of 1% was found by simultaneously scanning three NEMA NU 2 image quality phantoms, as well as relatively stable volume-of-interest quantification across 0.2%-100% of total counts through re-sampled datasets. In addition, an activity bias spread of -2% to +1% post-bolus injections in human subjects was found. Larger bias changes during the bolus injection phase in humans indicated the difficulty in providing accurate PET data corrections for complex activity distributions across a large dynamic range. Our results overall indicated that the quantitative performance achieved with the uEXPLORER scanner was uniform across the axial FOV and provided the accuracy necessary to support a wide range of imaging applications.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Humanos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Tomógrafos Computarizados por Rayos X
20.
J Nucl Med ; 62(6): 861-870, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008932

RESUMEN

The world's first total-body PET scanner with an axial field of view (AFOV) of 194 cm is now in clinical and research use at our institution. The uEXPLORER PET/CT system is the first commercially available total-body PET scanner. Here we present a detailed physical characterization of this scanner based on National Electrical Manufacturers Association (NEMA) NU 2-2018 along with a new set of measurements devised to appropriately characterize the total-body AFOV. Methods: Sensitivity, count-rate performance, time-of-flight resolution, spatial resolution, and image quality were evaluated following the NEMA NU 2-2018 protocol. Additional measurements of sensitivity and count-rate capabilities more representative of total-body imaging were performed using extended-geometry phantoms based on the world-average human height (∼165 cm). Lastly, image quality throughout the long AFOV was assessed with the NEMA image quality (IQ) phantom imaged at 5 axial positions and over a range of expected total-body PET imaging conditions (low dose, delayed imaging, short scan duration). Results: Our performance evaluation demonstrated that the scanner provides a very high sensitivity of 174 kcps/MBq, a count-rate performance with a peak noise-equivalent count rate of approximately 2 Mcps for total-body imaging, and good spatial resolution capabilities for human imaging (≤3.0 mm in full width at half maximum near the center of the AFOV). Excellent IQ, excellent contrast recovery, and low noise properties were illustrated across the AFOV in both NEMA IQ phantom evaluations and human imaging examples. Conclusion: In addition to standard NEMA NU 2-2018 characterization, a new set of measurements based on extending NEMA NU 2-2018 phantoms and experiments was devised to characterize the physical performance of the first total-body PET system. The rationale for these extended measurements was evident from differences in sensitivity, count-rate-activity relationships, and noise-equivalent count-rate limits imposed by differences in dead time and randoms fraction between the NEMA NU 2 70-cm phantoms and the more representative total-body imaging phantoms. Overall, the uEXPLORER PET system provides ultra-high sensitivity that supports excellent spatial resolution and IQ throughout the field of view in both phantom and human imaging.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación , Humanos , Límite de Detección , Fantasmas de Imagen , Control de Calidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...