Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Surg ; 11: 1441346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39421406

RESUMEN

Background: Surgical approaches that access the posterior temporal bone require careful drilling motions to achieve adequate exposure while avoiding injury to critical structures. Objective: We assessed a deep learning hand motion detector to potentially refine hand motion and precision during power drill use in a cadaveric mastoidectomy procedure. Methods: A deep-learning hand motion detector tracked the movement of a surgeon's hands during three cadaveric mastoidectomy procedures. The model provided horizontal and vertical coordinates of 21 landmarks on both hands, which were used to create vertical and horizontal plane tracking plots. Preliminary surgical performance metrics were calculated from the motion detections. Results: 1,948,837 landmark detections were collected, with an overall 85.9% performance. There was similar detection of the dominant hand (48.2%) compared to the non-dominant hand (51.7%). A loss of tracking occurred due to the increased brightness caused by the microscope light at the center of the field and by movements of the hand outside the field of view of the camera. The mean (SD) time spent (seconds) during instrument changes was 21.5 (12.4) and 4.4 (5.7) during adjustments of the microscope. Conclusion: A deep-learning hand motion detector can measure surgical motion without physical sensors attached to the hands during mastoidectomy simulations on cadavers. While preliminary metrics were developed to assess hand motion during mastoidectomy, further studies are needed to expand and validate these metrics for potential use in guiding and evaluating surgical training.

2.
J Neurosurg ; : 1-14, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39332037

RESUMEN

OBJECTIVE: Because gliomas have poorly defined tumor margins, the ability to achieve maximal resection is limited. To better discern these margins, fluorescence-guided surgery has been used to aid maximal safe resection. The authors describe their experience with the simultaneous use of intraoperative fluorescein sodium (FNa) confocal laser endomicroscopy (CLE) and operating microscope 5-aminolevulinic acid (5-ALA) fluorescence imaging for glioma resection to improve CLE use for better margin discrimination. METHODS: FNa CLE and 5-ALA wide-field imaging were used in 33 patients with gliomas. CLE imaging was enhanced with the use of a telesurgical pathology software platform that enables real-time conversation between the operating neurosurgeons and the pathologists located remotely. CLE was used for imaging tumor regions that were subjectively regarded as tumor margins under normal visualization with the operative microscope. After FNa CLE imaging, 5-ALA wide-field imaging was performed in the same regions. Tissue was biopsied at imaging locations, and interpretations of FNa CLE and 5-ALA wide-field imaging were compared to those of permanent histological sections. RESULTS: Eighty-eight deep- and superficial-margin regions of interest (ROIs) were imaged with FNa CLE and 5-ALA imaging. Most of the ROIs interpreted by the neuropathologist as infiltrative glioma based on FNa CLE imaging lacked 5-ALA-induced fluorescence. Permanent histological sections from the corresponding regions were concordant with the interpretation of FNa CLE images in 57 of 88 (65%) ROIs and with the interpretation of 5-ALA imaging in 43 of 88 (49%) ROIs. The sensitivity and specificity of FNa CLE for the interpretation of tumor margins were 73% and 41%, respectively, and those of 5-ALA were 38% and 82%, respectively. Positive and negative predictive values for CLE were 79% and 33%, respectively, and those for 5-ALA were 86% and 31%, respectively. CONCLUSIONS: Conventional intraoperative evaluation of tumor margins, based on MRI and wide-field fluorescence imaging, can underestimate the invasiveness of gliomas. FNa CLE showed higher accuracy in detecting regions with infiltrating tumors than intraoperative 5-ALA imaging. Future considerations should include more rigorous comparisons of FNa CLE imaging and 5-ALA-guided resections on a larger cohort of patients.

3.
World Neurosurg ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39305985

RESUMEN

OBJECTIVE: Deep learning enables precise hand tracking without the need for physical sensors, allowing for unsupervised quantitative evaluation of surgical motion and tasks. We quantitatively assessed the hand motions of experienced cerebrovascular neurosurgeons during simulated microvascular anastomosis using deep learning. We explored the extent to which surgical motion data differed among experts. METHODS: A deep learning detection system tracked 21 landmarks corresponding to digit joints and the wrist on each hand of 5 expert cerebrovascular neurosurgeons. Tracking data for each surgeon were analyzed over long and short time intervals to examine gross movements and micromovements, respectively. Quantitative algorithms assessed the economy and flow of motion by calculating mean movement distances from the baseline median landmark coordinates and median times between sutures, respectively. RESULTS: Tracking data correlated with specific surgical actions observed in microanastomosis video analysis. Economy of motion during suturing was calculated as 19, 26, 29, 27, and 28 pixels for surgeons 1, 2, 3, 4, and 5, respectively. Flow of motion during microanastomosis was 31.96, 29.40, 28.90, 7.37, and 47.21 seconds for surgeons 1, 2, 3, 4, and 5, respectively. CONCLUSIONS: Hand tracking data showed similarities among experts, with low movements from baseline, minimal excess motion, and rhythmic suturing patterns. The data revealed unique patterns related to each expert's habits and techniques. The results showed that surgical motion can be correlated with hand motion and assessed using mathematical algorithms. We also demonstrated the feasibility and potential of deep learning-based motion detection to enhance surgical training.

5.
Acta Neurochir (Wien) ; 166(1): 340, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160266

RESUMEN

The authors present the first reported case of MVNT in the thalamus in a 60-year-old man with a 20-year history of epilepsy and recent progressive neurological decline presented for neurosurgical evaluation for a non-enhancing mass predominantly in the right thalamus presumed to be a low-grade glioma. The tumor was subtotally resected using a left contralateral interhemispheric transcallosal approach. Histological and molecular assessment revealed an MVNT with MAPK pathway-activating mutation. The authors also conducted a systematic review of pathology-proven cases of MVNT to provide an up-to-date overview of the literature on the localization, presenting symptoms, and recurrence of this tumor.


Asunto(s)
Neoplasias Encefálicas , Tálamo , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Tálamo/patología , Tálamo/cirugía , Tálamo/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Glioma/diagnóstico por imagen
6.
World Neurosurg ; 192: 43-55, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216723

RESUMEN

Because of the complexity of the brain and its structures, anatomical knowledge is fundamental in neurosurgery. Anatomical dissection, body preservation, and vascular injection remain essential for training, teaching, and refining surgical techniques. This article explores the historical development of these practices and provides the contextual background of modern neurosurgical cadaveric brain models. Body preservation has ancient beginnings, evident in the Chinchorro mummifications and Egyptian embalming. However, brain preservation techniques for education were scarce until the beginning of the Renaissance in Europe. At the University of Bologna in the 13th century, occasional dissections were performed only in winter because of the lack of preservation techniques. Pope Sixtus IV's 1482 papal bull (official decree) formalized and expanded the use of dissection in medical education, leading to an explosion in anatomical studies. This surge brought advances in body preservation, such as soaking bodies in vinegar and distilled liquors. In subsequent centuries, Andreas Vesalius and Charles Bell advanced brain anatomical techniques and knowledge, combining novel illustrations and instruction. To better understand brain vasculature, Richard Lower developed vascular injection techniques using india ink and spirits of wine, leading to the 1664 description of the circle of Willis by Thomas Willis. In 1868, August Hofmann synthesized formaldehyde, markedly improving tissue preservation. Later, William Kruse introduced latex in 1939, and Sidney Sobin introduced silicone in 1965 for vascular studies. These advancements laid the foundation for modern neurosurgical cadaveric studies, many remaining relevant today.

7.
Front Surg ; 11: 1418679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983589

RESUMEN

Objective: The development of surgical microscope-associated cameras has given rise to a new operating style embodied by hybrid microsurgical and exoscopic operative systems. These platforms utilize specialized camera systems to visualize cranial neuroanatomy at various depths. Our study aims to understand how different camera settings in a novel hybrid exoscope system influence image quality in the context of neurosurgical procedures. Methods: We built an image database using captured cadaveric dissection images obtained with a prototype version of a hybrid (microsurgical/exoscopic) operative platform. We performed comprehensive 4K-resolution image capture using 76 camera settings across three magnification levels and two working distances. Computer algorithms such as structural similarity (SSIM) and mean squared error (MSE) were used to measure image distortion across different camera settings. We utilized a Laplacian filter to compute the overall sharpness of the acquired images. Additionally, a monocular depth estimation deep learning model was used to examine the image's capability to visualize the depth of deeper structures accurately. Results: A total of 1,368 high-resolution pictures were captured. The SSIM index ranged from 0.63 to 0.85. The MSE was nearly zero for all image batches. It was determined that the exoscope could accurately detect both the sharpness and depth based on the Laplacian filter and depth maps, respectively. Our findings demonstrate that users can utilize the full range of camera settings available on the exoscope, including adjustments to aperture, color saturation, contrast, sharpness, and brilliance, without introducing significant image distortions relative to the standard mode. Conclusion: The evolution of the camera incorporated into a surgical microscope enables exoscopic visualization during cranial base surgery. Our result should encourage surgeons to take full advantage of the exoscope's extensive range of camera settings to match their personal preferences or specific clinical requirements of the surgical scenario. This places the exoscope as an invaluable asset in contemporary surgical practice, merging high-definition imaging with ergonomic design and adaptable operability.

8.
Front Oncol ; 14: 1389608, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841162

RESUMEN

Objectives: Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists. Methods: In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined. Results: In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists. Conclusion: Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging.

9.
Neurosurg Rev ; 47(1): 190, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658446

RESUMEN

OBJECTIVE: We assessed types of cadaveric head and brain tissue specimen preparations that are used in a high throughput neurosurgical research laboratory to determine optimal preparation methods for neurosurgical anatomical research, education, and training. METHODS: Cadaveric specimens (N = 112) prepared using different preservation and vascular injection methods were imaged, dissected, and graded by 11 neurosurgeons using a 21-point scale. We assessed the quality of tissue and preservation in both the anterior and posterior circulations. Tissue quality was evaluated using a 9-point magnetic resonance imaging (MRI) scale. RESULTS: Formalin-fixed specimens yielded the highest scores for assessment (mean ± SD [17.0 ± 2.8]) vs. formalin-flushed (17.0 ± 3.6) and MRI (6.9 ± 2.0). Cadaver assessment and MRI scores were positively correlated (P < 0.001, R2 0.60). Analysis showed significant associations between cadaver assessment scores and specific variables: nonformalin fixation (ß = -3.3), preservation within ≤72 h of death (ß = 1.8), and MRI quality score (ß = 0.7). Formalin-fixed specimens exhibited greater hardness than formalin-flushed and nonformalin-fixed specimens (P ≤ 0.006). Neurosurgeons preferred formalin-flushed specimens injected with colored latex. CONCLUSION: For better-quality specimens for neurosurgical education and training, formalin preservation within ≤72 h of death was preferable, as was injection with colored latex. Formalin-flushed specimens more closely resembled live brain parenchyma. Assessment scores were lower for preparation techniques performed > 72 h postmortem and for nonformalin preservation solutions. The positive correlation between cadaver assessment scores and our novel MRI score indicates that donation organizations and institutional buyers should incorporate MRI as a screening tool for the selection of high-quality specimens.


Asunto(s)
Encéfalo , Cadáver , Imagen por Resonancia Magnética , Neurocirugia , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neurocirugia/educación , Procedimientos Neuroquirúrgicos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...