RESUMEN
Myocarditis is an inflammatory heart disease that leads to loss of cardiomyocytes and frequently precipitates fibrotic remodeling of the myocardium, culminating in heart failure. However, the molecular mechanisms underlying immune cell control and maintenance of tissue integrity in the inflamed cardiac microenvironment remain elusive. In this study, we found that bone morphogenic protein-4 (BMP4) gradients maintain cardiac tissue homeostasis by single-cell transcriptomics analyses of inflamed murine and human myocardial tissues. Cardiac BMP pathway dysregulation was reflected by reduced BMP4 serum concentration in patients with myocarditis. Restoration of BMP signaling by antibody-mediated neutralization of the BMP inhibitors gremlin-1 and gremlin-2 ameliorated T cell-induced myocardial inflammation in mice. Moreover, progression to inflammatory cardiomyopathy was blocked through the reduction of fibrotic remodeling and preservation of cardiomyocyte integrity. These results unveil the BMP4-gremlin axis as a druggable pathway for the treatment of myocardial inflammation, limiting the severe sequelae of cardiac fibrosis and heart failure.
Asunto(s)
Enfermedades Autoinmunes , Proteína Morfogenética Ósea 4 , Modelos Animales de Enfermedad , Fibrosis , Miocarditis , Miocarditis/metabolismo , Miocarditis/patología , Miocarditis/inmunología , Animales , Fibrosis/patología , Fibrosis/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Humanos , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/inmunología , Masculino , Transducción de Señal , Ratones , Microambiente Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Femenino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Miocardio/inmunologíaRESUMEN
B cell zone reticular cells (BRCs) form stable microenvironments that direct efficient humoral immunity with B cell priming and memory maintenance being orchestrated across lymphoid organs. However, a comprehensive understanding of systemic humoral immunity is hampered by the lack of knowledge of global BRC sustenance, function and major pathways controlling BRC-immune cell interactions. Here we dissected the BRC landscape and immune cell interactome in human and murine lymphoid organs. In addition to the major BRC subsets underpinning the follicle, including follicular dendritic cells, PI16+ RCs were present across organs and species. As well as BRC-produced niche factors, immune cell-driven BRC differentiation and activation programs governed the convergence of shared BRC subsets, overwriting tissue-specific gene signatures. Our data reveal that a canonical set of immune cell-provided cues enforce bidirectional signaling programs that sustain functional BRC niches across lymphoid organs and species, thereby securing efficient humoral immunity.
Asunto(s)
Linfocitos B , Células del Estroma , Ratones , Humanos , Animales , Inmunidad Humoral , Células Dendríticas Foliculares , HomeostasisRESUMEN
Fibroblastic reticular cells (FRCs) direct the interaction and activation of immune cells in discrete microenvironments of lymphoid organs. Despite their important role in steering innate and adaptive immunity, the age- and inflammation-associated changes in the molecular identity and functional properties of human FRCs have remained largely unknown. Here, we show that human tonsillar FRCs undergo dynamic reprogramming during life and respond vigorously to inflammatory perturbation in comparison to other stromal cell types. The peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) subset of adult tonsils exhibited the strongest inflammation-associated structural remodeling. Interactome analysis combined with ex vivo and in vitro validation revealed that T cell activity within subepithelial niches is controlled by distinct molecular pathways during PI16+ RC-lymphocyte interaction. In sum, the topological and molecular definition of the human tonsillar stromal cell landscape reveals PI16+ RCs as a specialized FRC niche at the core of mucosal immune responses in the oropharynx.
Asunto(s)
Tonsila Palatina , Linfocitos T , Humanos , Fibroblastos , Linfocitos/metabolismo , Inflamación/metabolismo , Proteínas Portadoras/metabolismo , Glicoproteínas/metabolismoRESUMEN
BACKGROUND: The effects of the com quorum sensing system during colonisation and invasion of Streptococcus pneumoniae (Spn) are poorly understood. METHODS: We developed an ex vivo model of differentiated human airway epithelial (HAE) cells with beating ciliae, mucus production and tight junctions to study Spn colonisation and translocation. HAE cells were inoculated with Spn wild-type TIGR4 (wtSpn) or its isogenic ΔcomC quorum sensing-deficient mutant. RESULTS: Colonisation density of ΔcomC mutant was lower after 6 h but higher at 19 h and 30 h compared to wtSpn. Translocation correlated inversely with colonisation density. Transepithelial electric resistance (TEER) decreased after pneumococcal inoculation and correlated with increased translocation. Confocal imaging illustrated prominent microcolony formation with wtSpn but disintegration of microcolony structures with ΔcomC mutant. ΔcomC mutant showed greater cytotoxicity than wtSpn, suggesting that cytotoxicity was likely not the mechanism leading to translocation. There was greater density- and time-dependent increase of inflammatory cytokines including NLRP3 inflammasome-related IL-18 after infection with ΔcomC compared with wtSpn. ComC inactivation was associated with increased pneumolysin expression. CONCLUSIONS: ComC system allows a higher organisational level of population structure resulting in microcolony formation, increased early colonisation and subsequent translocation. We propose that ComC inactivation unleashes a very different and possibly more virulent phenotype that merits further investigation.
Asunto(s)
Percepción de Quorum , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , FenotipoRESUMEN
Innate lymphoid cells (ILCs) govern immune cell homeostasis in the intestine and protect the host against microbial pathogens. Various cell-intrinsic pathways have been identified that determine ILC development and differentiation. However, the cellular components that regulate ILC sustenance and function in the intestinal lamina propria are less known. Using single-cell transcriptomic analysis of lamina propria fibroblasts, we identify fibroblastic reticular cells (FRCs) that underpin cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Genetic ablation of lymphotoxin-ß receptor expression in Ccl19-expressing FRCs blocks the maturation of CPs into mature ILFs. Interactome analysis shows the major niche factors and processes underlying FRC-ILC crosstalk. In vivo validation confirms that a sustained lymphotoxin-driven feedforward loop of FRC activation including IL-7 generation is critical for the maintenance of functional ILC populations. In sum, our study indicates critical fibroblastic niches within the intestinal lamina propria that control ILC homeostasis and functionality and thereby secure protective gut immunity.
Asunto(s)
Inmunidad Innata , Linfocitos , Fibroblastos , Homeostasis , IntestinosRESUMEN
Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche-specific functions of FRC subpopulations have been defined using genetic targeting, high-dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC-immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.
Asunto(s)
Fibroblastos , Células del Estroma , Comunicación Celular , Diferenciación Celular , Perfilación de la Expresión Génica , Humanos , Ganglios LinfáticosRESUMEN
The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells.
Asunto(s)
Melanoma Experimental/terapia , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Técnicas de Reprogramación Celular/métodos , Quimiocina CXCL13/genética , Quimiocina CXCL13/inmunología , Femenino , Vectores Genéticos , Interleucina-33/deficiencia , Interleucina-33/genética , Interleucina-33/inmunología , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/inmunología , Virus de la Coriomeningitis Linfocítica/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células del Estroma/inmunología , Células del Estroma/patología , Linfocitos T/inmunología , Linfocitos T/patología , Microambiente Tumoral/inmunologíaRESUMEN
Fibroblastic reticular cells (FRCs) are a crucial part of the stromal cell infrastructure of secondary lymphoid organs (SLOs). Lymphoid organ fibroblasts form specialized niches for immune cell interactions and thereby govern lymphocyte activation and differentiation. Moreover, FRCs produce and ensheath a network of extracellular matrix (ECM) microfibers called the conduit system. FRC-generated conduits contribute to fluid and immune cell control by funneling fluids containing antigens and inflammatory mediators through the SLOs. We review recent progress in FRC biology that has advanced our understanding of immune cell functions and interactions. We discuss the intricate relationships between the cellular FRC and the fibrillar conduit networks, which together form the basis for efficient communication between immune cells and the tissues they survey.
Asunto(s)
Comunicación Celular , Fibroblastos , Células del Estroma , Matriz Extracelular , Ganglios LinfáticosRESUMEN
Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.
Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Interleucina-33/inmunología , Activación de Linfocitos/inmunología , Células del Estroma/inmunología , Adenoviridae/genética , Animales , Línea Celular Tumoral , Quimiocina CCL19/metabolismo , Quimera/genética , Epítopos de Linfocito T/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/inmunología , Humanos , Pulmón/citología , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , VacunaciónRESUMEN
Tissue-resident macrophages play a crucial role in maintaining homeostasis. Macrophage progenitors migrate to tissues perinatally, where environmental cues shape their identity and unique functions. Here, we show that the absence of PPARγ affects neonatal development and VCAM-1 expression of splenic iron-recycling red pulp macrophages (RPMs) and bone marrow erythroblastic island macrophages (EIMs). Transcriptome analysis of the few remaining Pparg-deficient RPM-like and EIM-like cells suggests that PPARγ is required for RPM and EIM identity, cell cycling, migration, and localization, but not function in mature RPMs. Notably, Spi-C, another transcription factor implicated in RPM development, was not essential for neonatal expansion of RPMs, even though the transcriptome of Spic-deficient RPMs was strongly affected and indicated a loss of identity. Similarities shared by Pparg- and Spic-deficient RPM-like cells allowed us to identify pathways that rely on both factors. PPARγ and Spi-C collaborate in inducing transcriptional changes, including VCAM-1 and integrin αD expression, which could be required for progenitor retention in the tissue, allowing access to niche-related signals that finalize differentiation.
Asunto(s)
Médula Ósea/inmunología , Eritroblastos/inmunología , Macrófagos/inmunología , PPAR gamma/inmunología , Bazo/inmunología , Animales , Médula Ósea/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Cultivadas , Eritroblastos/citología , Eritroblastos/metabolismo , Eritrocitos/citología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Regulación de la Expresión Génica , Hierro/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monocitos/inmunología , Monocitos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Bazo/citología , Bazo/metabolismoRESUMEN
Fibroblastic reticular cells (FRCs) determine the organization of lymphoid organs and control immune cell interactions. While the cellular and molecular mechanisms underlying FRC differentiation in lymph nodes and the splenic white pulp have been elaborated to some extent, in Peyer's patches (PPs) they remain elusive. Using a combination of single-cell transcriptomics and cell fate mapping in advanced mouse models, we found that PP formation in the mouse embryo is initiated by an expansion of perivascular FRC precursors, followed by FRC differentiation from subepithelial progenitors. Single-cell transcriptomics and cell fate mapping confirmed the convergence of perivascular and subepithelial FRC lineages. Furthermore, lineage-specific loss- and gain-of-function approaches revealed that the two FRC lineages synergistically direct PP organization, maintain intestinal microbiome homeostasis and control anticoronavirus immune responses in the gut. Collectively, this study reveals a distinct mosaic patterning program that generates key stromal cell infrastructures for the control of intestinal immunity.
Asunto(s)
Linaje de la Célula , Fibroblastos/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Comunicación Celular , Células Cultivadas , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Interacciones Huésped-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/virología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Virus de la Hepatitis Murina/inmunología , Virus de la Hepatitis Murina/patogenicidad , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/microbiología , Ganglios Linfáticos Agregados/virología , Fenotipo , Análisis de la Célula Individual , TranscriptomaRESUMEN
Stromal cells have for a long time been viewed as structural cells that support distinct compartments within lymphoid tissues and little more. Instead, an active cross-talk between endothelial and fibroblastic stromal cells drives the maturation of lymphoid niches, a relationship that is recapitulated during lymph node organogenesis, steady-state conditions, and following inflammation. In this review, we go over recent advances in genetic models and high-resolution transcriptomic analyses that have propelled the finer resolution of the stromal cell infrastructure of lymph nodes, revealing that the distinct subsets are strategically positioned to deliver a catered mixture of niche factors to interacting immune cell populations. Moreover, we discuss how changes in the activation state of poised stromal cell-underpinned niches rather than on-demand differentiation of new stromal cell subsets govern the efficient interaction of Ag, APC, and cognate B and T lymphocytes during adaptive immune responses.
Asunto(s)
Ganglios Linfáticos/inmunología , Linfocitos/inmunología , Células del Estroma/fisiología , Inmunidad Adaptativa , Animales , Diferenciación Celular , Microambiente Celular , Humanos , Activación de LinfocitosRESUMEN
Fibroblastic reticular cells (FRCs) are stromal cells that actively promote the induction of immune responses by coordinating the interaction of innate and adaptive immune cells. However, whether and to which extent immune cell activation is determined by lymph node FRC reprogramming during acute viral infection has remained unexplored. Here, we genetically ablated expression of the type I interferon-α receptor (Ifnar) in Ccl19-Cre+ cells and found that sensing of type I interferon imprints an antiviral state in FRCs and thereby preserves myeloid cell composition in lymph nodes of naive mice. During localized lymphocytic choriomeningitis virus infection, IFNAR signaling precipitated profound phenotypic adaptation of all FRC subsets enhancing antigen presentation, chemokine-driven immune cell recruitment, and immune regulation. The IFNAR-dependent shift of all FRC subsets toward an immunostimulatory state reduced exhaustive CD8+ T cell activation. In sum, these results unveil intricate circuits underlying type I IFN sensing in lymph node FRCs that enable protective antiviral immunity.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Fibroblastos/inmunología , Interferón Tipo I/inmunología , Coriomeningitis Linfocítica/inmunología , Células del Estroma/inmunología , Animales , Línea Celular , Interferón gamma/inmunología , Virus de la Coriomeningitis Linfocítica , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients.
Asunto(s)
Linfocitos B/inmunología , Microambiente Celular/inmunología , Quimiocina CXCL13/metabolismo , Células Dendríticas Foliculares/inmunología , Inmunidad Adaptativa , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Línea Celular , Quimiocina CXCL13/inmunología , Simulación por Computador , Células Dendríticas Foliculares/citología , Células Dendríticas Foliculares/metabolismo , Matriz Extracelular/metabolismo , Humanos , Ratones , Ratones Noqueados , Microscopía Fluorescente , Modelos Biológicos , Tonsila Palatina/citología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Células del Estroma/inmunología , Células del Estroma/metabolismoRESUMEN
Efficient generation of germinal center (GC) responses requires directed movement of B cells between distinct microenvironments underpinned by specialized B cell-interacting reticular cells (BRCs). How BRCs are reprogrammed to cater to the developing GC remains unclear, and studying this process is largely hindered by incomplete resolution of the cellular composition of the B cell follicle. Here we used genetic targeting of Cxcl13-expressing cells to define the molecular identity of the BRC landscape. Single-cell transcriptomic analysis revealed that BRC subset specification was predetermined in the primary B cell follicle. Further topological remodeling of light and dark zone follicular dendritic cells required CXCL12-dependent crosstalk with B cells and dictated GC output by retaining B cells in the follicle and steering their interaction with follicular helper T cells. Together, our results reveal that poised BRC-defined microenvironments establish a feed-forward system that determines the efficacy of the GC reaction.
Asunto(s)
Oscuridad , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunomodulación/efectos de la radiación , Luz , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Comunicación Celular , Quimiocina CXCL12/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Fibroblastic reticular cells (FRCs) form a road-like cellular network in lymph nodes (LNs) that provides essential chemotactic, survival, and regulatory signals for immune cells. While the topological characteristics of the FRC network have been elaborated, the network properties of the micro-tubular conduit system generated by FRCs, which drains lymph fluid through a pipeline-like system to distribute small molecules and antigens, has remained unexplored. Here, we quantify the crucial 3D morphometric parameters and determine the topological properties governing the structural organization of the intertwined networks. We find that the conduit system exhibits lesser small-worldness and lower resilience to perturbation compared to the FRC network, while the robust topological organization of both networks is maintained in a lymphotoxin-ß-receptor-independent manner. Overall, the high-resolution topological analysis of the "roads-and-pipes" networks highlights essential parameters underlying the functional organization of LN micro-environments and will, hence, advance the development of multi-scale LN models.
Asunto(s)
Ganglios Linfáticos/anatomía & histología , Ganglios Linfáticos/fisiología , Animales , Fibroblastos/citología , Cinética , Receptor beta de Linfotoxina/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Transducción de SeñalRESUMEN
Fibroblastic reticular cells (FRCs) are immunologically specialized myofibroblasts of lymphoid organ, and FRC maturation is essential for structural and functional properties of lymph nodes (LNs). Here we show that YAP and TAZ (YAP/TAZ), the final effectors of Hippo signaling, regulate FRC commitment and maturation. Selective depletion of YAP/TAZ in FRCs impairs FRC growth and differentiation and compromises the structural organization of LNs, whereas hyperactivation of YAP/TAZ enhances myofibroblastic characteristics of FRCs and aggravates LN fibrosis. Mechanistically, the interaction between YAP/TAZ and p52 promotes chemokine expression that is required for commitment of FRC lineage prior to lymphotoxin-ß receptor (LTßR) engagement, whereas LTßR activation suppresses YAP/TAZ activity for FRC maturation. Our findings thus present YAP/TAZ as critical regulators of commitment and maturation of FRCs, and hold promise for better understanding of FRC-mediated pathophysiologic processes.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Fibroblastos/metabolismo , Ganglios Linfáticos/citología , Transactivadores/metabolismo , Adipocitos/metabolismo , Animales , Quimiocinas/metabolismo , Fibroblastos/ultraestructura , Ganglios Linfáticos/ultraestructura , Receptor beta de Linfotoxina/metabolismo , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Proteínas Señalizadoras YAPRESUMEN
Myocarditis can develop into inflammatory cardiomyopathy through chronic stimulation of myosin heavy chain 6-specific T helper (TH)1 and TH17 cells. However, mechanisms governing the cardiotoxicity programming of heart-specific T cells have remained elusive. Using a mouse model of spontaneous autoimmune myocarditis, we show that progression of myocarditis to lethal heart disease depends on cardiac myosin-specific TH17 cells imprinted in the intestine by a commensal Bacteroides species peptide mimic. Both the successful prevention of lethal disease in mice by antibiotic therapy and the significantly elevated Bacteroides-specific CD4+ T cell and B cell responses observed in human myocarditis patients suggest that mimic peptides from commensal bacteria can promote inflammatory cardiomyopathy in genetically susceptible individuals. The ability to restrain cardiotoxic T cells through manipulation of the microbiome thereby transforms inflammatory cardiomyopathy into a targetable disease.
Asunto(s)
Enfermedades Autoinmunes/complicaciones , Bacteroides/inmunología , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/microbiología , Microbioma Gastrointestinal/inmunología , Miocarditis/complicaciones , Péptidos/inmunología , beta-Galactosidasa/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Humanos , Intestinos/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Miocarditis/inmunología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/inmunología , Células Th17/inmunologíaRESUMEN
Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.
Asunto(s)
Citocinas/metabolismo , Ganglios Linfáticos/citología , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Células del Estroma/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Microambiente Celular , Inmunofenotipificación , Macrófagos/inmunología , Ratones , Ratones Transgénicos , Transducción de SeñalRESUMEN
The splenic white pulp is underpinned by poorly characterized stromal cells that demarcate distinct immune cell microenvironments. Here we establish fibroblastic reticular cell (FRC)-specific fate-mapping in mice to define their embryonic origin and differentiation trajectories. Our data show that all reticular cell subsets descend from multipotent progenitors emerging at embryonic day 19.5 from periarterial progenitors. Commitment of FRC progenitors is concluded during the first week of postnatal life through occupation of niches along developing central arterioles. Single cell transcriptomic analysis facilitated deconvolution of FRC differentiation trajectories and indicated that perivascular reticular cells function both as adult lymphoid organizer cells and mural cell progenitors. The lymphotoxin-ß receptor-independent sustenance of postnatal progenitor stemness unveils that systemic immune surveillance in the splenic white pulp is governed through subset specification of reticular cells from a multipotent periarterial progenitor cell. In sum, the finding that discrete signaling events in perivascular niches determine the differentiation trajectories of reticular cell networks explains the development of distinct microenvironmental niches in secondary and tertiary lymphoid tissues that are crucial for the induction and regulation of innate and adaptive immune processes.