RESUMEN
Respirable metal oxide nanoparticles in welding fumes pose significant health risks upon inhalation, potentially leading to neurodegenerative diseases. While the exact mechanisms remain unclear, it is evident that metal oxide nanoparticles can disrupt cellular functions, including metabolism and inflammatory responses after crossing the blood-brain barrier (BBB). Our study investigates the impact of manual metal arc welding fumes on hormone receptor transcription in an in vivo mouse model. After collecting samples from six different brain regions at 24 and 96 h upon exposure, we focused on expression levels of estrogen receptors (ERs), thyroid hormone receptors (TRs), and peroxisome proliferator-activated receptors (PPARs) due to their roles in modulating neuroprotective responses and neuroinflammatory processes. Analysis revealed differential susceptibility of brain regions to hormonal disruption induced by welding fumes, with the hypothalamus (HT) and olfactory bulb (OB) showing prominent changes in receptor expression. Considering ERs, 24 h sampling showed an elevation in OB, with later increases in both ERα and ERß. HT showed significant ERß change only by 96 h. TRs mirrored ER patterns, with notable changes in OB and less in HT. PPARγ followed TR trends, with early upregulation in HT and downregulation elsewhere. These findings suggest a compensatory response within the CNS aimed at mitigating neuroinflammatory effects, as evidenced by the upregulation of ERß, TRα, and PPARγ. The coordinated increase in ERs, TRs, and PPARs in the hypothalamus and olfactory bulb also highlights their potential neuroprotective roles in response to welding fume exposure. Our results also support the theory of metal oxide penetration to the CNS via the lungs-blood-BBB pathway, making HT and OB more vulnerable to welding fume exposure.
Asunto(s)
Encéfalo , Animales , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Óxidos , Masculino , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Exposición por Inhalación , Receptores de Estrógenos/metabolismoRESUMEN
The sex of crocodilians is determined by the temperature to which the eggs, and hence the developing embryo are exposed during critical periods of development. Temperature-dependent sex determination is a process that occurs in all crocodilians and numerous other reptile taxa. The study of artificial incubation temperatures in different species of crocodiles and alligators has determined the specific temperature ranges that result in altered sex ratios. It has also revealed the precise temperature thresholds at which an equal number of males and females are generated, as well as the specific developmental period during which the sex of the hatchlings may be shifted. This review will examine the molecular basis of the sex-determination mechanism in crocodilians elucidated during recent decades. It will focus on the many patterns and theories associated with this process. Additionally, we will examine the consequences that arise after hatching due to changes in incubation temperatures, as well as the potential benefits and dangers of a changing climate for crocodilians who display sex determination based on temperature.
RESUMEN
INTRODUCTION AND OBJECTIVE: Correlations between the number of milk somatic cells (SCC), the number of microorganisms, and the content of basic components of milk were studied on five farms (F1-F5) with cows of the same breed, but with different milking systems. MATERIAL AND METHODS: From each farm, 50 Holstein Friesien milk samples were collected once a month (250 samples/month; n=3,000) during March 2022 - February 2023. Samples from farms F1 and F5 were tested for fat, protein, lactose, no fat dry matter content (FTIR spectroscopy), for the SCC (Fossomatic 7), and for the differential cells (Vetscan DC-Q). RESULTS: The highest fat content was confirmed on farm F5 (3.85 ± 1.70%) and F4 (3.82 ± 0.21%) with automatic milking system (AMS). However, from the point of view of protein content, these farms showed slightly lower values (<0.05). F1 did not meet the minimum required amount for fat content (2.84 ± 0.81%) set by the legislation of the Slovakia. The comparison shows that there is not much difference in cell size between healthy cells and mastitis cells. The average size of healthy cells was approximately 8.77 ± 0.49 µm. In the monitored period, the average values determined were at the level of 292,000/mL (5.46 ± 0.72 log10 SCC) in cow milk samples, while for the rest of the year, the values remained at 256,000/mL (5.40 ± 0.80 log10 SCC). F1 was categorized as a positive farm with a high TLC (total milk leucocyte count) concentration (5.58 log10 cells/mL, 406.65 ± 53.80 × 103 cells/mL) and a predominant NEU fraction (61%). Farms F2, F4, and F5 were classified as negative farms (TLC was 4.70 ± 0.26 log10 cells/ml). CONCLUSIONS: According to the results, the size of SCCs in healthy milk does not differ from SCCs found in mastitis milk. From the results, it can be concluded that the transition to the latest generation of robotic milking method can positively affect milk production and its quality.
Asunto(s)
Industria Lechera , Leche , Animales , Leche/química , Leche/citología , Industria Lechera/métodos , Industria Lechera/instrumentación , Femenino , Recuento de Células , Bovinos , Lactosa/análisis , Eslovaquia , Proteínas de la Leche/análisis , LactanciaRESUMEN
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,ß; TRα,ß) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,ß, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRß and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Asunto(s)
Arsénico , Hipotálamo , Mitocondrias , ARN Mensajero , Animales , Masculino , Ratones , Arsénico/toxicidad , Respiración de la Célula/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Introduction: The use of ozonized water is gaining importance in medicine due to its effects on hyperglycemia and wound healing mechanisms. Methods: This experiment was conducted to assess the impacts of intradermal administration of ozonated water on acute skin wound healing in a diabetic rat model. Sixty-four adult male Wistar rats were randomly divided into two groups: an ozonated water group (O3W) and a control group (CG). Experimental diabetes was chemically induced in the rats by the intraperitoneal administration of 60 mg/kg streptozotocin. One week later, full-thickness skin surgical wounds (1 cm2) were created between the two shoulders of the rats under general anesthesia. The wounds were then daily irrigated with normal saline (CG) or intradermally injected with 1 mL of ozonated water at 10 mg/L O3W. Wound healing was evaluated through macroscopic analysis, measuring wound size, diameter, and percentage of contraction rate before wounding and at 3, 7, 9, 12, 14, 18, 21, 24, and 28 days post-wounding. On days 7, 14, 21, and 28 after induction of the wounds, the body weights and blood glucose levels of rats (8 per group) were measured before the rats were euthanized. Moreover, the morphological structure of the tissue, vascular endothelial and transforming growth factor (VEGF and TGF) affinity and gene expression were examined. Results: The O3W group had significantly lower blood glucose levels and wound size and gained body weight. Additionally, epithelial vascularization, stromal edema, TGF, and VEGF gene expression significantly improved in the O3W group. Discussion: Therefore, ozonated water has the potential to enhance and promote cutaneous wound healing in diabetic rats.
RESUMEN
The aim of this study was to compare the effect of humic acid (HA) obtained by extraction from alginate on the incubation of roes and fry development in African cichlids, Labidochormis caeruleus, as well as their influence on the stabilization of the physicochemical parameters of water in an aquarium during artificial breeding. The roes were obtained by extruding from a female buccal cavity immediately after fertilization. For the experiment, 4 groups of 40 roes were formed in an incubator with an artificial hatchery. Groups 1-3 were exposed to 1%, 5%, and 10% concentrations of HA, respectively. The control group C was not exposed to HA. In all groups, the mortality and size differences of the fry, as well as the temperature, pH, hardness, nitrite, and nitrate levels in the tanks, were determined during a 30-day monitoring period until the resorption of the yolk sac. The results of this study indicated the ability of HA in 5% and 10% concentrations to reduce nitrite and nitrate levels in the aquatic environment, which significantly reduced the mortality of roes and the survivability of the fry. The determination of the morphological measurements of the fry revealed an increased body length in the groups exposed to 5% and 10% HA concentrations compared to the control group by the end of the monitored period. It was also noted that the yolk sac was resorbed two days earlier in the same groups than in the control. Thus, the results showed that HAs are suitable for use in the artificial aquarium incubation of roes and fry development, which are increasingly exposed to adverse environmental factors. The knowledge obtained in this study and its transfer into practice can allow even less experienced aquarists to successfully breed aquarium fish species that could not normally be bred under artificial conditions without the addition of HA.
RESUMEN
In this study, we assessed the effect of humic substances, as an organic supplement in feed, on the fattening performance, meat quality and selected lipid and mineral parameters from the blood serum of rabbits. Three groups of the Giant Saris rabbit breed were used (one control and two experimental), with 16 animals per group. The animals in the control group were fed a standard pellet diet, the humic substances group received a basal diet supplemented with 5% humic substances, and the third group received a basal diet with 5% humic−fatty substances preparation during the entire experiment (from 35 to 120 days of age). There were 85 days of fattening; then, the rabbits were slaughtered. In the group supplemented with 5% humic−fatty substances addition, we noticed a higher final weight (p < 0.05) and higher average daily gains compared to the control group at the end of the fattening period, at 120 days of age. On the other hand, a slightly lower final weight (p > 0.05) in the group supplemented with humic substances was found compared to the control group. In the comparison of the individual parameters of the meat quality in rabbits, we observed a positive effect in the reduction in the intramuscular fat content and the lipid parameters as well as a lower total cholesterol from the blood serum in both supplemented groups. Regarding the mineral parameters, we observed elevated blood serum values of calcium and phosphorus in both experimental groups. The addition of humic−fatty substances appears to be the most effective way of supplementing rabbit feed due to the synergistic effect of humates and vegetable oils for their optimal growth development and the production of reduced-fat meat.
RESUMEN
This study investigated 960 Slovak and Czech spotted cattle from four different conventional (non-organic) dairy herds located in Eastern Slovakia and Czechia during early lactation (14-100 days after calving). Dairy cows were examined clinically; milk from fore-stripping of each udder quarter was subjected to sensory examination and assessed by the California mastitis test (CMT), and laboratory analyses of bacterial pathogens in milk, including virulence factors, were conducted. Positive CMT scores (1-3) for one or more quarters were detected in 271 (28.2%) of the examined animals. Out of 230 infected milk samples, representing 24.0% of all dairy cows, staphylococci (59.1% of positive findings) were the most commonly isolated organisms, followed by E. coli (11.3%), streptococci Str. uberis (9.1%) and Str. agalactiae (3.4%), and enterococci (6.1%). From 136 isolates of S. aureus (38 isolates) and non-aureus staphylococci (NAS; 98 isolates), virulence factors and their resistance to 14 antimicrobials were detected using the disk diffusion method, with PCR detection of the methicillin resistance gene, mecA. An increased incidence of clinical and chronic forms of mastitis has been reported in mastitic cows in which staphylococci, especially S. aureus and NAS (S. chromogenes, S. warneri, and S. xylosus), have been detected and compared to other isolated udder pathogens. From those species, S. aureus and isolates of NAS mentioned above showed multiple virulence factors that are more likely to hydrolyze DNA, hemolysis, produce gelatinase and biofilm, and have multi-drug resistance as compared to other less virulent staphylococci. Generally, the isolated staphylococci showed 77.2% resistance to one or more antimicrobials, in particular to aminoglycosides, ß-lactams, macrolides, or cephalosporins. Isolates that showed the ability to form a biofilm were more resistant to more than one antimicrobial than isolates without biofilm production. Multi-drug resistance to three or more antimicrobial classes was recorded in 16 isolates (11.7%), and the presence of the mecA gene was also confirmed in two isolates of S. aureus and two species of NAS.
RESUMEN
The application of metallic nanoparticles poses risks to human and animal health. Titanium dioxide nanoparticles (TiO2NPs) are the most commonly synthesized metallic oxides in the world. Exposure to TiO2NPs can cause toxicity in the target organisms. This study aimed to evaluate the effects of green and chemical TiO2NPs on maternal and embryo-fetal livers. Green TiO2NPs using garlic extract (GTiO2NPs) and chemical TiO2NPs (CHTiO2NPs) were synthesized and characterized by x-ray powder diffraction and high-resolution transmission electron microscopy. The cytotoxicity of both chemical and green TiO2NPs was determined against HepG2 cell lines. Fifty pregnant female Albino rats were equally and randomly divided into five groups. Group 1 was kept as a control. Groups 2 and 3 were orally treated with 100 and 300 mg/kg body weight of CHTiO2NPs, respectively. Groups 4 and 5 were orally treated with 100 and 300 mg/kg of GTiO2NPs, respectively, from day 6 to 19 of gestation. All dams were euthanized on gestation day 20. All live fetuses were weighed and euthanized. Blood and tissue samples were collected for biochemical, histopathological, and Bax-immunohistochemical expression analyses. Our results indicated that garlic could be used as a reducing agent for the synthesis of TiO2NPs, and the produced NPs have no toxic effect against HepG2 cells compared with CHTiO2NPs. The maternal and fetal bodyweights were greatly reduced among the chemically TiO2NPs induced animals. The mean serum level of AST and ALT activities and the total protein level significantly increased when TiO2NPs were administered at high doses. Histologically, the CHTiO2NPs-treated groups revealed vacuolated and necrotized hepatocytes with congested and dilated blood vessels in the fetal and maternal livers. The immunohistochemistry revealed distinct positive staining of Bax expressed in the hepatocytes. Nevertheless, the biosynthesis of TiO2NPs using garlic extract had a minimal effect on the normal architecture of the liver. It could be concluded that the bioactivity of TiO2NPs can be modified by green synthesis using garlic extract. Compared to the CHTiO2NPs, the exposure to GTiO2NPs showed reduced liver damage in maternal and embryo-fetal rats.
RESUMEN
In dairy industry, quality of produced milk must be more important than quantity without a high somatic cells count (SCC) or pathogens causing mastitis of dairy cows and consumer diseases. Preserving the good health of dairy cows is a daily challenge for all involved in primary milk production. Despite the increasing level of technological support and veterinary measures, inflammation of the mammary gland-mastitis, is still one of the main health problems and reasons for economic losses faced by cow farmers. The mammary gland of high-yielding dairy cows requires making the right decisions and enforcing the proper measures aimed at minimizing external and internal factors that increase the risk of intramammary infection. Due to the polyfactorial nature of mastitis related to its reduction, the effectiveness of commonly used antimastitis methods tends to be limited and therefore it is necessary to find the areas of risk in udder health programs and monitoring systems. Only by implementing of complete udder health programs should be accompanied by research efforts to further development these complete udder health control. The present review analyses the current knowledge dealing with damping and prevention of mastitis include SCC control, proper nutrition, housing and management, milking and drying as practiced in dairy farming conditions. This information may help to improve the health of the mammary gland and the welfare of the dairy cows as well as the production of safe milk for consumers.