Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 11(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35453201

RESUMEN

Gram-positive bacteria do not produce lipopolysaccharide as a cell wall component. As such, the polymyxin class of antibiotics, which exert bactericidal activity against Gram-negative pathogens, are ineffective against Gram-positive bacteria. The safe-for-human-use hydroxyquinoline analog ionophore PBT2 has been previously shown to break polymyxin resistance in Gram-negative bacteria, independent of the lipopolysaccharide modification pathways that confer polymyxin resistance. Here, in combination with zinc, PBT2 was shown to break intrinsic polymyxin resistance in Streptococcus pyogenes (Group A Streptococcus; GAS), Staphylococcus aureus (including methicillin-resistant S. aureus), and vancomycin-resistant Enterococcus faecium. Using the globally disseminated M1T1 GAS strain 5448 as a proof of principle model, colistin in the presence of PBT2 + zinc was shown to be bactericidal in activity. Any resistance that did arise imposed a substantial fitness cost. PBT2 + zinc dysregulated GAS metal ion homeostasis, notably decreasing the cellular manganese content. Using a murine model of wound infection, PBT2 in combination with zinc and colistin proved an efficacious treatment against streptococcal skin infection. These findings provide a foundation from which to investigate the utility of PBT2 and next-generation polymyxin antibiotics for the treatment of Gram-positive bacterial infections.

2.
mBio ; 13(3): e0067622, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35467425

RESUMEN

The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit. IMPORTANCE During infection, microbes must escape host immune responses and survive exposure to reactive oxygen species produced by immune cells. Here, we identify the ABC transporter substrate binding protein GshT as a key component of the glutathione salvage pathway in glutathione-auxotrophic GAS. Host-acquired glutathione is crucial to the GAS antioxidant defense system, facilitating escape from the host innate immune response. This study demonstrates a direct link between glutathione assimilation, aerobic metabolism, and virulence factor production in an important human pathogen. Our findings provide mechanistic insight into host adaptation that enables extracellular bacterial pathogens such as GAS to exploit the abundance of glutathione in the host cytosol for their own benefit.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Transportadoras de Casetes de Unión a ATP/metabolismo , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Glutatión/metabolismo , Humanos , Evasión Inmune , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/metabolismo , Factores de Virulencia/metabolismo
3.
mBio ; 11(6)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262259

RESUMEN

Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.


Asunto(s)
Cobre/metabolismo , Glutatión/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Transporte Biológico , Cobre/farmacología , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Homeostasis , Ratones , Mutación , Streptococcus pyogenes/efectos de los fármacos , Estrés Fisiológico , Virulencia
4.
J Infect Dis ; 221(3): 449-453, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31541571

RESUMEN

L-lactate is an abundant metabolite in a number of niches in host organisms and represents an important carbon source for bacterial pathogens such as Neisseria gonorrhoeae. In this study, we describe an alternative, iron-sulfur cluster-containing L-lactate dehydrogenase (LutACB), that is distinct from the flavoprotein L-lactate dehydrogenase (LldD). Expression of lutACB was found to be positively regulated by iron, whereas lldD was more highly expressed under conditions of iron-limitation. The functional role of LutACB and LldD was reflected in in vitro studies of growth and in the survival of N gonorrhoeae in primary cervical epithelial cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cuello del Útero/citología , Células Epiteliales/microbiología , Gonorrea/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Viabilidad Microbiana/genética , Neisseria gonorrhoeae/enzimología , Proteínas Bacterianas/genética , Femenino , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Gonorrea/microbiología , Humanos , Hierro/metabolismo , L-Lactato Deshidrogenasa/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/crecimiento & desarrollo , ARN Viral/genética
5.
PLoS Pathog ; 15(8): e1007957, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31437249

RESUMEN

Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences.


Asunto(s)
Suplementos Dietéticos , Modelos Animales de Enfermedad , Enfermedades Pulmonares/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Virulencia/efectos de los fármacos , Zinc/administración & dosificación , Animales , Femenino , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Ratones , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo
6.
mSphere ; 4(1)2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760615

RESUMEN

Group A Streptococcus (GAS) is a major cause of global infection-related morbidity and mortality. A modern controlled human infection model (CHIM) of GAS pharyngitis can accelerate vaccine development and pathogenesis research. A robust rationale for strain selection is central to meeting ethical, scientific, and regulatory requirements. Multifaceted characterization studies were done to compare a preferred candidate emm75 (M75) GAS strain to three other strains: an alternative candidate emm12 (M12) strain, an M1 strain used in 1970s pharyngitis CHIM studies (SS-496), and a representative (5448) of the globally disseminated M1T1 clone. A range of approaches were used to explore strain growth, adherence, invasion, delivery characteristics, short- and long-term viability, phylogeny, virulence factors, vaccine antigens, resistance to killing by human neutrophils, and lethality in a murine invasive model. The strains grew reliably in a medium without animal-derived components, were consistently transferred using a swab method simulating the CHIM protocol, remained viable at -80°C, and carried genes for most candidate vaccine antigens. Considering GAS molecular epidemiology, virulence factors, in vitro assays, and results from the murine model, the contemporary strains show a spectrum of virulence, with M75 appearing the least virulent and 5448 the most. The virulence profile of SS-496, used safely in 1970s CHIM studies, was similar to that of 5448 in the animal model and virulence gene carriage. The results of this multifaceted characterization confirm the M75 strain as an appropriate choice for initial deployment in the CHIM, with the aim of safely and successfully causing pharyngitis in healthy adult volunteers.IMPORTANCE GAS (Streptococcus pyogenes) is a leading global cause of infection-related morbidity and mortality. A modern CHIM of GAS pharyngitis could help to accelerate vaccine development and drive pathogenesis research. Challenge strain selection is critical to the safety and success of any CHIM and especially so for an organism such as GAS, with its wide strain diversity and potential to cause severe life-threatening acute infections (e.g., toxic shock syndrome and necrotizing fasciitis) and postinfectious complications (e.g., acute rheumatic fever, rheumatic heart disease, and acute poststreptococcal glomerulonephritis). In this paper, we outline the rationale for selecting an emm75 strain for initial use in a GAS pharyngitis CHIM in healthy adult volunteers, drawing on the findings of a broad characterization effort spanning molecular epidemiology, in vitro assays, whole-genome sequencing, and animal model studies.


Asunto(s)
Faringitis/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/patogenicidad , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Genoma Bacteriano , Humanos , Ratones , Ratones Transgénicos , Faringe/microbiología , Streptococcus pyogenes/efectos de los fármacos , Virulencia , Factores de Virulencia/metabolismo , Secuenciación Completa del Genoma
7.
Biochem J ; 476(3): 595-611, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30670571

RESUMEN

Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/farmacología , Manganeso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Streptococcus pyogenes/metabolismo , Superóxido Dismutasa/metabolismo , Proteínas Bacterianas/genética , Hierro/metabolismo , Estrés Oxidativo/genética , Streptococcus pyogenes/genética , Superóxido Dismutasa/genética
8.
mBio ; 9(6)2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538186

RESUMEN

The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer's and Huntington's disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, "On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you."


Asunto(s)
Antibacterianos/farmacología , Clioquinol/análogos & derivados , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Bacterias Grampositivas/efectos de los fármacos , Ionóforos/metabolismo , Zinc/metabolismo , Clioquinol/metabolismo , Pruebas de Sensibilidad Microbiana
9.
Infect Immun ; 86(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581188

RESUMEN

Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (ΔadcA ΔadcAII) and export (ΔczcD) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens.


Asunto(s)
Streptococcus pyogenes/metabolismo , Zinc/metabolismo , Zinc/toxicidad , Animales , ADN Bacteriano , Eliminación de Gen , Regulación de la Expresión Génica/inmunología , Humanos , Complejo de Antígeno L1 de Leucocito/metabolismo , Lisosomas , Ratones , Ratones Transgénicos , Neutrófilos/fisiología , Plasminógeno/genética , Plasminógeno/metabolismo , Piel/citología , Piel/metabolismo , Piel/microbiología , Enfermedades Cutáneas Bacterianas/metabolismo , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/patogenicidad , Virulencia
10.
J Bacteriol ; 200(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29378883

RESUMEN

Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Exotoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Exotoxinas/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Mutagénesis , Neutrófilos/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
Adv Microb Physiol ; 70: 123-191, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28528647

RESUMEN

Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.


Asunto(s)
Homeostasis , Infecciones Estreptocócicas/microbiología , Streptococcus pneumoniae/metabolismo , Streptococcus pyogenes/metabolismo , Elementos de Transición/metabolismo , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Inmunidad Innata , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pyogenes/efectos de los fármacos , Elementos de Transición/farmacología , Virulencia/efectos de los fármacos
12.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28373352

RESUMEN

Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA (PerR-regulated metal transporter A), a P1B-4-type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448ΔpmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448ΔpmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Estrés Oxidativo , Streptococcus pyogenes/enzimología , Adenosina Trifosfatasas/genética , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis , Humanos , Peróxido de Hidrógeno/farmacología , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Transgénicos , Mutación , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Estreptonigrina/farmacología
13.
FASEB J ; 30(5): 1901-12, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26839376

RESUMEN

We aimed to characterize antimicrobial zinc trafficking within macrophages and to determine whether the professional intramacrophage pathogen Salmonella enterica serovar Typhimurium (S Typhimurium) subverts this pathway. Using both Escherichia coli and S Typhimurium, we show that TLR signaling promotes the accumulation of vesicular zinc within primary human macrophages. Vesicular zinc is delivered to E. coli to promote microbial clearance, whereas S. Typhimurium evades this response via Salmonella pathogenicity island (SPI)-1. Even in the absence of SPI-1 and the zinc exporter ZntA, S Typhimurium resists the innate immune zinc stress response, implying the existence of additional host subversion mechanisms. We also demonstrate the combinatorial antimicrobial effects of zinc and copper, a pathway that S. Typhimurium again evades. Our use of complementary tools and approaches, including confocal microscopy, direct assessment of intramacrophage bacterial zinc stress responses, specific E. coli and S Typhimurium mutants, and inductively coupled plasma mass spectroscopy, has enabled carefully controlled characterization of this novel innate immune antimicrobial pathway. In summary, our study provides new insights at the cellular level into the well-documented effects of zinc in promoting host defense against infectious disease, as well as the complex host subversion strategies employed by S Typhimurium to combat this pathway.-Kapetanovic, R., Bokil, N. J., Achard, M. E. S., Ong, C.-L. Y., Peters, K. M., Stocks, C. J., Phan, M.-D., Monteleone, M., Schroder, K., Irvine, K. M., Saunders, B. M., Walker, M. J., Stacey, K. J., McEwan, A. G., Schembri, M. A., Sweet, M. J. Salmonella employs multiple mechanisms to subvert the TLR-inducible zinc-mediated antimicrobial response of human macrophages.


Asunto(s)
Macrófagos/inmunología , Macrófagos/metabolismo , Salmonella typhimurium/fisiología , Salmonella/fisiología , Receptores Toll-Like/metabolismo , Zinc/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Células Cultivadas , Cobre , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Toll-Like/genética
14.
Pathog Dis ; 74(2)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26702634

RESUMEN

Methylglyoxal is a dicarbonyl compound that acts as a toxic electrophile in biological systems. Methylglyoxal is produced in certain bacteria as a byproduct of glycolysis through methylglyoxal synthase. Like many bacteria, Group A Streptococcus (GAS), a Gram-positive human pathogen responsible for a wide spectrum of diseases, uses a two-step glyoxalase system to remove methylglyoxal. However, bioinformatic analysis revealed that no homologue of methylglyoxal synthase is present in GAS, suggesting that the role of the glyoxalase system is to detoxify methylglyoxal produced by the host. In this study, we investigated the role of methylglyoxal detoxification in the pathogenesis of GAS. A mutant (5448ΔgloA), deficient in glyoxylase I (S-lactoylglutathione lyase), was constructed and tested for susceptibility to methylglyoxal, human neutrophil survival and virulence in a murine model of infection. 5448ΔgloA was more sensitive to methylglyoxal and was also more susceptible to human neutrophil killing. Inhibition of neutrophil myeloperoxidase rescued the gloA-deficient mutant indicating that this enzyme was required for methylglyoxal production. Furthermore, the 5448ΔgloA mutant was slower at disseminating into the blood in the murine model. These data suggest that neutrophils produce methylglyoxal as an antimicrobial agent during bacterial infection, and the glyoxalase system is part of the GAS defence against the innate immune system during pathogenesis.


Asunto(s)
Piruvaldehído/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología , Animales , Bacteriemia/inmunología , Bacteriemia/microbiología , Bacteriemia/mortalidad , Biología Computacional/métodos , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Inmunidad Innata , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Ratones , Ratones Transgénicos , Viabilidad Microbiana/inmunología , Modelos Biológicos , Mutación , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/mortalidad , Streptococcus pyogenes/patogenicidad , Virulencia
15.
Sci Rep ; 5: 15877, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26522788

RESUMEN

The group A Streptococcus (GAS) M1T1 clone emerged in the 1980s as a leading cause of epidemic invasive infections worldwide, including necrotizing fasciitis and toxic shock syndrome. Horizontal transfer of mobile genetic elements has played a central role in the evolution of the M1T1 clone, with bacteriophage-encoded determinants DNase Sda1 and superantigen SpeA2 contributing to enhanced virulence and colonization respectively. Outbreaks of scarlet fever in Hong Kong and China in 2011, caused primarily by emm12 GAS, led to our investigation of the next most common cause of scarlet fever, emm1 GAS. Genomic analysis of 18 emm1 isolates from Hong Kong and 16 emm1 isolates from mainland China revealed the presence of mobile genetic elements associated with the expansion of emm12 scarlet fever clones in the M1T1 genomic background. These mobile genetic elements confer expression of superantigens SSA and SpeC, and resistance to tetracycline, erythromycin and clindamycin. Horizontal transfer of mobile DNA conferring multi-drug resistance and expression of a new superantigen repertoire in the M1T1 clone should trigger heightened public health awareness for the global dissemination of these genetic elements.


Asunto(s)
Secuencias Repetitivas Esparcidas/genética , Escarlatina/microbiología , Streptococcus/genética , Antibacterianos , Proteínas de la Membrana Bacteriana Externa/genética , China/epidemiología , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/fisiología , Hong Kong/epidemiología , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Escarlatina/epidemiología , Virulencia/genética
16.
Sci Rep ; 5: 10799, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26028191

RESUMEN

Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Carbono/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/metabolismo , Zinc/toxicidad , Galactosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Glucólisis , Humanos , Ácido Hialurónico/biosíntesis , Redes y Vías Metabólicas , Streptococcus pyogenes/genética , Estrés Fisiológico
17.
J Biol Chem ; 290(31): 18954-61, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26055706

RESUMEN

Zinc (Zn) and copper (Cu) are essential for optimal innate immune function, and nutritional deficiency in either metal leads to increased susceptibility to bacterial infection. Recently, the decreased survival of bacterial pathogens with impaired Cu and/or Zn detoxification systems in phagocytes and animal models of infection has been reported. Consequently, a model has emerged in which the host utilizes Cu and/or Zn intoxication to reduce the intracellular survival of pathogens. This review describes and assesses the potential role for Cu and Zn intoxication in innate immune function and their direct bactericidal function.


Asunto(s)
Infecciones Bacterianas/inmunología , Cobre/fisiología , Inmunidad Innata , Zinc/fisiología , Animales , Infecciones Bacterianas/microbiología , Transporte Biológico , Interacciones Huésped-Patógeno , Humanos
18.
Nat Commun ; 6: 6418, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25731976

RESUMEN

Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth's crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress.


Asunto(s)
Cadmio/metabolismo , Cadmio/toxicidad , Homeostasis/fisiología , Modelos Moleculares , Estrés Oxidativo/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Cristalización , Homeostasis/efectos de los fármacos , Immunoblotting , Lipoproteínas/química , Lipoproteínas/metabolismo , Magnesio/metabolismo , Conformación Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zinc/metabolismo
19.
mBio ; 6(2)2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25805729

RESUMEN

UNLABELLED: Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a spectrum of human disease states. Metallobiology of human pathogens is revealing the fundamental role of metals in both nutritional immunity leading to pathogen starvation and metal poisoning of pathogens by innate immune cells. Spy0980 (MntE) is a paralog of the GAS zinc efflux pump CzcD. Through use of an isogenic mntE deletion mutant in the GAS serotype M1T1 strain 5448, we have elucidated that MntE is a manganese-specific efflux pump required for GAS virulence. The 5448ΔmntE mutant had significantly lower survival following infection of human neutrophils than did the 5448 wild type and the complemented mutant (5448ΔmntE::mntE). Manganese homeostasis may provide protection against oxidative stress, explaining the observed ex vivo reduction in virulence. In the presence of manganese and hydrogen peroxide, 5448ΔmntE mutant exhibits significantly lower survival than wild-type 5448 and the complemented mutant. We hypothesize that MntE, by maintaining homeostatic control of cytoplasmic manganese, ensures that the peroxide response repressor PerR is optimally poised to respond to hydrogen peroxide stress. Creation of a 5448ΔmntE-ΔperR double mutant rescued the oxidative stress resistance of the double mutant to wild-type levels in the presence of manganese and hydrogen peroxide. This work elucidates the mechanism for manganese toxicity within GAS and the crucial role of manganese homeostasis in maintaining GAS virulence. IMPORTANCE: Manganese is traditionally viewed as a beneficial metal ion to bacteria, and it is also established that most bacteria can tolerate high concentrations of this transition metal. In this work, we show that in group A Streptococcus, mutation of the mntE locus, which encodes a transport protein of the cation diffusion facilitator (CDF) family, results in accumulation of manganese and sensitivity to this transition metal ion. The toxicity of manganese is indirect and is the result of a failure of the PerR regulator to respond to oxidative stress in the presence of high intracellular manganese concentrations. These results highlight the importance of MntE in manganese homeostasis and maintenance of an optimal manganese/iron ratio in GAS and the impact of manganese on resistance to oxidative stress and virulence.


Asunto(s)
Homeostasis , Manganeso/metabolismo , Estrés Oxidativo , Streptococcus pyogenes/fisiología , Animales , Transporte Biológico Activo , Células Cultivadas , Modelos Animales de Enfermedad , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Peróxido de Hidrógeno/toxicidad , Manganeso/toxicidad , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Transgénicos , Viabilidad Microbiana , Neutrófilos/inmunología , Neutrófilos/microbiología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/metabolismo , Virulencia
20.
J Infect Dis ; 210(8): 1311-8, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24737798

RESUMEN

Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD(+)-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells.


Asunto(s)
Cuello del Útero/citología , Células Epiteliales/microbiología , Lactato Deshidrogenasas/metabolismo , Neisseria gonorrhoeae/enzimología , Neutrófilos/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Lactato Deshidrogenasas/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...