Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biofilm ; 6: 100138, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078060

RESUMEN

Postoperative implant-associated spine infection remains poorly understood. Currently there is no large animal model using biofilm as initial inocula to study this challenging clinical entity. The purpose of the present study was to develop a sheep model for implant-associated spine infection using clinically relevant biofilm inocula and to assess the in vivo utility of methylene blue (MB) for visualizing infected tissues and guiding debridement. This 28-day study used five adult female Rambouillet sheep, each with two non-contiguous surgical sites- in the lumbar and thoracic regions- comprising randomized positive and negative infection control sites. A standard mini-open approach to the spine was performed to place sterile pedicle screws and Staphylococcus aureus biofilm-covered (positive control), or sterile (negative control) spinal fusion rods. Surgical site bioburden was quantified at the terminal procedure. Negative and positive control sites were stained with MB and staining intensity quantified from photographs. Specimens were analyzed with x-ray, micro-CT and histologically. Inoculation rods contained ∼10.44 log10 colony forming units per rod (CFU/rod). Biofilm inocula persisted on positive-control rod explants with ∼6.16 log10 CFU/rod. There was ∼6.35 log10 CFU/g of tissue in the positive controls versus no identifiable bioburden in the negative controls. Positive controls displayed hallmarks of deep spine infection and osteomyelitis, with robust local tissue response, bone resorption, and demineralization. MB staining was more intense in infected, positive control sites. This work presents an animal-efficient sheep model displaying clinically relevant implant-associated deep spine infection.

2.
PLoS One ; 18(8): e0290347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37624860

RESUMEN

Antimicrobial blue light (aBL) is an attractive option for managing biofilm burden at the skin-implant interface of percutaneous osseointegrated (OI) implants. However, marketed aBL devices have both structural and optical limitations that prevent them from being used in an OI implant environment. They must be handheld, preventing even irradiation of the entire skin-implant interface, and the devices do not offer sufficient optical power outputs required to kill biofilms. We present the developmental process of a unique aBL device that overcomes these limitations. Four prototypes are detailed, each being a progressive improvement from the previous iteration as we move from proof-of-concept to in vivo application. Design features focused on a cooling system, LED orientation, modularity, and "sheep-proofing". The final prototype was tested in an in vivo OI implant sheep model, demonstrating that it was structurally and optically adequate to address biofilm burdens at the skin-implant of percutaneous OI implants. The device made it possible to test aBL in the unique OI implant environment and compare its efficacy to clinical antibiotics-data which had not before been achievable. It has provided insight into whether or not continued pursual of light therapy research for OI implants, and other percutaneous devices, is worthwhile. However, the device has drawbacks concerning the cooling system, complexity, and size if it is to be translated to human clinical trials. Overall, we successfully developed a device to test aBL therapy for patients with OI implants and helped progress understanding in the field of infection management strategies.


Asunto(s)
Antiinfecciosos , Prótesis Anclada al Hueso , Humanos , Animales , Ovinos , Prótesis e Implantes , Luz , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Front Microbiol ; 14: 1158558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303789

RESUMEN

Background: Bacterial biofilms readily develop on all medical implants, including percutaneous osseointegrated (OI) implants. With the growing rate of antibiotic resistance, exploring alternative options for managing biofilm-related infections is necessary. Antimicrobial blue light (aBL) is a unique therapy that can potentially manage biofilm-related infections at the skin-implant interface of OI implants. Antibiotics are known to have antimicrobial efficacy disparities between the planktonic and biofilm bacterial phenotypes, but it is unknown if this characteristic also pertains to aBL. In response, we developed experiments to explore this aspect of aBL therapy. Methods: We determined minimum bactericidal concentrations (MBCs) and antibiofilm efficacies for aBL, levofloxacin, and rifampin against Staphylococcus aureus ATCC 6538 planktonic and biofilm bacteria. Using student t-tests (p < 0.05), we compared the efficacy profiles between the planktonic and biofilm states for the three independent treatments and a levofloxacin + rifampin combination. Additionally, we compared antimicrobial efficacy patterns for levofloxacin and aBL against biofilms as dosages increased. Results: aBL had the most significant efficacy disparity between the planktonic and biofilm phenotypes (a 2.5 log10 unit difference). However, further testing against biofilms revealed that aBL had a positive correlation between increasing efficacy and exposure time, while levofloxacin encountered a plateau. While aBL efficacy was affected the most by the biofilm phenotype, its antimicrobial efficacy did not reach a maximum. Discussion/conclusion: We determined that phenotype is an important characteristic to consider when determining aBL parameters for treating OI implant infections. Future research would benefit from expanding these findings against clinical S. aureus isolates and other bacterial strains, as well as the safety of long aBL exposures on human cells.

4.
J Orthop Res ; 41(9): 2046-2054, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36815575

RESUMEN

Biofilm contamination is often present at the skin-implant interface of transfemoral osseointegrated implants leading to frequent infection, irritation, and discomfort. New biofilm management regimens are needed as the current standard of washing the site with soap and water is inadequate to manage infection rates. We investigated the potential of antimicrobial blue light, which has reduced risk of resistance development and broad antimicrobial mechanisms. Our lab developed an antimicrobial blue light (aBL) device uniquely designed for an ex vivo system based on an established ovine osseointegrated (OI) implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Samples were irradiated with aBL or washed for three consecutive days after which they were quantified. Colony-forming unit (CFU) counts were compared with a control group (bacterial inocula without treatment). After 1 day, aBL administered as a single 6 h dose or two 1 h doses spaced 6 h apart both reduced the CFU count by 1.63 log10 ± 0.02 CFU. Over 3 days of treatment, a positive aBL trend was observed with a maximum reduction of ~2.7 log10 CFU following 6 h of treatment, indicating a relation between multiple days of irradiation and greater CFU reductions. aBL was more effective at reducing the biofilm burden at the skin-implant interface compared with the wash group, demonstrating the potential of aBL as a biofilm management option.


Asunto(s)
Antiinfecciosos , Prótesis Anclada al Hueso , Animales , Ovinos , Biopelículas , Prótesis e Implantes , Antibacterianos
5.
Microorganisms ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36363725

RESUMEN

Biofilm contamination is common in patients with percutaneous osseointegrated (OI) implants, leading to frequent infections, irritation, and discomfort. Reported infection rates soar up to 65% as the recalcitrant nature of biofilms complicates treatment. There is persistent need for therapies to manage biofilm burden. In response, we formulated and tested oregano essential oil in a topical gel as a potential biofilm management therapy. We developed an ex vivo system based on an established ovine OI implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Gel was administered to the samples across a period of five days. Samples were quantified and colony forming unit (CFU) counts were compared against a positive control (initial bacterial inocula without treatment). Significant biofilm reduction was observed in samples treated with oregano gel compared to controls, demonstrating the potential of an oregano oil-based gel as a biofilm management therapy at the skin-implant interface of percutaneous OI implants.

6.
J Colloid Interface Sci ; 529: 366-374, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29940319

RESUMEN

HYPOTHESIS: The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates. EXPERIMENTS: Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH2PO4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field. FINDINGS: Dispersed aqueous domains of 2-6 nm radius dissolve a solid block of KDP at 0-10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...