Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 8(8): ziae085, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086598

RESUMEN

Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC's immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity.

2.
Acta Biomater ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089349

RESUMEN

The cell (plasma) membrane is enriched with numerous receptors, ligands, enzymes, and phospholipids that play important roles in cell-cell and cell-extracellular matrix interactions governing, for instance, tissue development and repair. We previously showed that plasma membrane nanofragments (PMNFs) act as nucleation sites for bone formation in vivo, and induce in vitro mineralization within 1 day. In this study, we optimized the methods for generating, isolating, and applying PMNFs as a cell-free therapeutic to expedite bone defect repair. The PMNFs were isolated from different mouse cell lines (chondrocytes, osteoblasts, and fibroblasts), pre-conditioned, lyophilized, and subsequently transplanted into 2 mm critical-sized calvarial defects in mice (n = 75). The PMNFs from chondrocytes, following a 3-day pre-incubation, significantly accelerated bone repair within 2 weeks, through a coordinated attraction of macrophages, endothelial cells, and osteoblasts to the healing site. In vitro experiments confirmed that PMNFs enhanced cell adhesion. Comparison of the PMNF efficacy with phosphatidylserine, amorphous calcium phosphate (ACP), and living cells confirmed the unique ability of PMNFs to promote accelerated bone repair. Importantly, PMNFs promoted nearly complete integration of the regenerated bone with native tissue after 6 weeks (% non-integrated bone area = 15.02), contrasting with the partial integration (% non-integrated bone area = 56.10; p < 0.01, Student's test) with transplantation of ACP. Vickers microhardness tests demonstrated that the regenerated bone after 6 weeks (30.10 ± 1.75) exhibited hardness similar to native bone (31.07 ± 2.46). In conclusion, this is the first study to demonstrate that cell membrane can be a promising cell-free material with multifaceted biofunctional properties that promote accelerated bone repair. STATEMENT OF SIGNIFICANCE.

3.
Heliyon ; 10(13): e34206, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091941

RESUMEN

Introduction: Vital pulp therapy (VPT) is performed to preserve dental pulp. However, the biocompatibility of the existing materials is of concern. Therefore, novel materials that can induce pulp healing without adverse effects need to be developed. Resolvin D2 (RvD2), one of specialized pro-resolving mediators, can resolve inflammation and promote the healing of periapical lesions. Therefore, RvD2 may be suitable for use in VPT. In the present study, we evaluated the efficacy of RvD2 against VPT using in vivo and in vitro models. Methods: First molars of eight-week-old male Sprague-Dawley rats were used for pulpotomy. They were then divided into three treatment groups: RvD2, phosphate-buffered saline, and calcium hydroxide groups. Treatment results were assessed using radiological, histological, and immunohistochemical (GPR18, TNF-α, Ki67, VEGF, TGF-ß, CD44, CD90, and TRPA1) analyses. Dental pulp-derived cells were treated with RvD2 in vitro and analyzed using cell-proliferation and cell-migration assays, real-time PCR (Gpr18, Tnf-α, Il-1ß, Tgf-ß, Vegf, Nanog, and Trpa1), ELISA (VEGF and TGF-ß), immunocytochemistry (TRPA1), and flow cytometry (dental pulp stem cells: DPSCs). Results: The formation of calcified tissue in the pulp was observed in the RvD2 and calcium hydroxide groups. RvD2 inhibited inflammation in dental pulp cells. RvD2 promoted cell proliferation and migration and the expression of TGF-ß and VEGF in vitro and in vivo. RvD2 increased the number of DPSCs. In addition, RvD2 suppressed TRPA1 expression as a pain receptor. Conclusion: RvD2 induced the formation of reparative dentin, anti-inflammatory effects, and decreased pain, along with the proliferation of DPSCs via the expression of VEGF and TGF-ß, on the pulp surface in pulpotomy models.

4.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928355

RESUMEN

The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/ß-Tricalcium phosphate (E-rhBMP-2/ß-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/ß-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/ß-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/ß-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.


Asunto(s)
Proteína Morfogenética Ósea 2 , Fosfatos de Calcio , Modelos Animales de Enfermedad , Osteocitos , Proteínas Recombinantes , Animales , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Osteocitos/efectos de los fármacos , Fosfatos de Calcio/farmacología , Ratones , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Osteonecrosis de los Maxilares Asociada a Difosfonatos/etiología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Humanos , Regeneración Ósea/efectos de los fármacos , Masculino , Extracción Dental/efectos adversos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Proceso Alveolar/efectos de los fármacos , Proceso Alveolar/patología
5.
Cells ; 13(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786031

RESUMEN

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.


Asunto(s)
Proteína Morfogenética Ósea 2 , Mucosa Bucal , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Mucosa Bucal/metabolismo , Animales , Ratones , Queratinas/metabolismo , Queratinas/genética , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Ontología de Genes
6.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699440

RESUMEN

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38625720

RESUMEN

Phytopathogenic bacteria (MAFF 302110T and MAFF 302107) were isolated from lesions on Japanese angelica trees affected by bacterial soft rot in Yamanashi Prefecture, Japan. The strains were Gram-reaction-negative, facultatively anaerobic, motile with peritrichous flagella, rod-shaped, and non-spore-forming. The genomic DNA G+C content was 51.1 mol % and the predominant cellular fatty acids included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 2 (comprising any combination of C12 : 0 aldehyde, an unknown fatty acid with an equivalent chain length of 10.928, C16 : 1 iso I, and C14 : 0 3OH), and C12 : 0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences, along with phylogenomic analysis utilizing whole-genome sequences, consistently placed these strains within the genus Pectobacterium. However, their phylogenetic positions did not align with any known species within the genus. Comparative studies involving average nucleotide identity and digital DNA-DNA hybridization with the closely related species indicated values below the thresholds employed for the prokaryotic species delineation (95-96 % and 70 %, respectively), with the highest values observed for Pectobacterium polonicum DPMP315T (92.10 and 47.1 %, respectively). Phenotypic characteristics, cellular fatty acid composition, and a repertoire of secretion systems could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic, and genotypic data obtained in this study show that MAFF 302110T/MAFF 302107 represent a novel species of the genus Pectobacterium, for which we propose the name Pectobacterium araliae sp. nov., designating MAFF 302110T (=ICMP 25161T) as the type strain.


Asunto(s)
Angelica , Pectobacterium , Japón , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
8.
J Prosthodont Res ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479889

RESUMEN

PURPOSE: This prospective cohort study examined the effects of the number of present and functional teeth on mortality among older Japanese adults requiring nursing care in an environment of comprehensive oral hygiene and nutritional management. METHODS: The study included 174 older adults (mean age: 84.4 ± 8.3 years; male/female: 49/125) in need of support or long-term care, who resided in either a local specialized healthcare facility or their own homes, and received daily oral hygiene and nutritional support at facilities in Okayama, Japan. The initial clinical oral examination along with assessment of general physical condition and nursing environment of the participants were performed in July 2013 and followed up for one year. RESULTS: All-cause mortality occurred in 28 (mean age: 88.7 ±13.4 years; male/female: 6 /22) individuals during the follow-up period. Cox proportional hazard analysis indicated that older age, low performance in activities of daily living (Barthel Index <40), and underweight status (body mass index <18.5) were significant risk factors for mortality. The number of present and functional teeth were not found to be significant risk factors for mortality. CONCLUSIONS: During the one-year follow-up period, the number of present and functional teeth did not have a significant impact on mortality among older Japanese adults requiring nursing care in a well-managed environment of oral hygiene and nutritional status.

9.
Cancer Sci ; 115(4): 1317-1332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279512

RESUMEN

T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeutic agents have been developed, their therapeutic effects are suboptimal. α-Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic malignancies. This report provides a comprehensive analysis of the potential benefits of using α-pinene as an antitumor agent for the treatment of T-cell tumors. We found that α-pinene inhibited the proliferation of hematologic malignancies, especially in T-cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and reactive oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α-pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted.


Asunto(s)
Monoterpenos Bicíclicos , Neoplasias Hematológicas , Neoplasias , Humanos , FN-kappa B/metabolismo , Linfocitos T/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular
10.
Cell Stem Cell ; 30(9): 1179-1198.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683603

RESUMEN

Osteoarthritis is a degenerative joint disease that causes pain, degradation, and dysfunction. Excessive canonical Wnt signaling in osteoarthritis contributes to chondrocyte phenotypic instability and loss of cartilage homeostasis; however, the regulatory niche is unknown. Using the temporomandibular joint as a model in multiple species, we identify Lgr5-expressing secretory cells as forming a Wnt inhibitory niche that instruct Wnt-inactive chondroprogenitors to form the nascent synovial joint and regulate chondrocyte lineage and identity. Lgr5 ablation or suppression during joint development, aging, or osteoarthritis results in depletion of Wnt-inactive chondroprogenitors and a surge of Wnt-activated, phenotypically unstable chondrocytes with osteoblast-like properties. We recapitulate the cartilage niche and create StemJEL, an injectable hydrogel therapy combining hyaluronic acid and sclerostin. Local delivery of StemJEL to post-traumatic osteoarthritic jaw and knee joints in rabbit, rat, and mini-pig models restores cartilage homeostasis, chondrocyte identity, and joint function. We provide proof of principal that StemJEL preserves the chondrocyte niche and alleviates osteoarthritis.


Asunto(s)
Condrocitos , Osteoartritis , Porcinos , Animales , Conejos , Ratas , Porcinos Enanos , Cartílago , Envejecimiento , Receptores Acoplados a Proteínas G
11.
Orthod Craniofac Res ; 26 Suppl 1: 131-141, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36891610

RESUMEN

OBJECTIVE: The temporomandibular joint (TMJ) is anatomically comprised of the mandibular condylar cartilage (CC) lined with fibrocartilaginous superficial zone and is crucial for eating and dental occlusion. TMJ osteoarthritis (OA) leads to pain, joint dysfunction and permanent loss of cartilage tissue. However, there are no drugs clinically available that ameliorate OA and little is known about global profiles of genes that contribute to TMJ OA. Furthermore, animal models that recapitulate the complexity of signalling pathways contributing to OA pathogenesis are crucial for designing novel biologics that thwart OA progression. We have previously developed a New Zealand white rabbit TMJ injury model that demonstrates CC degeneration. Here, we performed genome-wide profiling to identify new signalling pathways critical for cellular functions during OA pathology. MATERIALS AND METHODS: Temporomandibular joint OA was surgically induced in New Zealand white rabbits. Three months following injury, we performed global gene expression profiling of the TMJ condyle. RNA samples from TMJ condyles were subjected to sequencing. After raw RNA-seq data were mapped to relevant genomes, differential expression was analysed with DESeq2. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted. RESULTS/CONCLUSIONS: Our study revealed multiple pathways altered during TMJ OA induction including the Wnt, Notch and PI3K-Akt signalling pathways. We demonstrate an animal model that recapitulates the complexity of the cues and signals underlying TMJ OA pathogenesis, which is essential for developing and testing novel pharmacologic agents to treat OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Conejos , Animales , RNA-Seq , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Articulación Temporomandibular , Cóndilo Mandibular/metabolismo , Cartílago/metabolismo , Cartílago/patología , Osteoartritis/genética , Osteoartritis/metabolismo , Cartílago Articular/metabolismo
12.
J Fungi (Basel) ; 9(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36983482

RESUMEN

Current periodontal treatment focuses on the mechanical removal of the source of infection, such as bacteria and their products, and there is no approach to control the host inflammatory response that leads to tissue destruction. In order to control periodontal inflammation, we have previously reported the optimization of (+)-terrein synthesis methods and the inhibitory effect of (+)-terrein on osteoclast differentiation in vitro. However, the pharmacological effect of (+)-terrein in vivo in the periodontitis model is still unknown. In this study, we investigated the effect of synthetic (+)-terrein on inflammatory bone resorption using a ligature-induced periodontitis mouse model. Synthetic (+)-terrein (30 mg/kg) was administered intraperitoneally twice a week to the mouse periodontitis model. The control group was treated with phosphate buffer. One to two weeks after the induction of periodontitis, the periodontal tissues were harvested for radiological evaluation (micro-CT), histological evaluation (HE staining and TRAP staining), and the evaluation of inflammatory cytokine production in the periodontal tissues and serum (quantitative reverse-transcription PCR, ELISA). The synthetic (+)-terrein-treated group suppressed alveolar bone resorption and the number of osteoclasts in the periodontal tissues compared to the control group (p < 0.05). In addition, synthetic (+)-terrein significantly suppressed both mRNA expression of TNF-α in the periodontal tissues and the serum concentration of TNF-α (both p < 0.05). In conclusion, we have demonstrated that synthetic (+)-terrein abrogates alveolar bone resorption via the suppression of TNF-α production and osteoclast differentiation in vivo. Therefore, we could expect potential clinical effects when using (+)-terrein on inflammatory bone resorption, including periodontitis.

13.
Oral Dis ; 29(3): 1089-1101, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34743383

RESUMEN

OBJECTIVE: Cherubism is a genetic disorder characterised by bilateral jawbone deformation. The associated jawbone lesions regress after puberty, whereas severe cases require surgical treatment. Although several drugs have been tested, fundamental treatment strategies for cherubism have not been established. The effectiveness of imatinib has recently been reported; however, its pharmaceutical mechanism remains unclear. In this study, we tested the effects of imatinib using a cherubism mouse model. METHODS: We used Sh3bp2 P416R cherubism mutant mice, which exhibit systemic organ inflammation and osteopenia. The effects of imatinib were determined using primary bone marrow-derived macrophages. Imatinib was administered intraperitoneally to the mice, and serum tumour necrosis factor-α (TNFα), organ inflammation and bone properties were examined. RESULTS: The cherubism mutant macrophages produced higher levels of TNFα in response to lipopolysaccharide compared to wild-type macrophages, and imatinib did not significantly suppress TNFα production. Although imatinib suppressed osteoclast formation in vitro, administering it in vivo did not suppress organ inflammation and osteopenia. CONCLUSION: The in vivo administration of imatinib had a minimal therapeutic impact in cherubism mutant mice. To establish better pharmaceutical interventions, it is necessary to integrate new findings from murine models with clinical data from patients with a definitive diagnosis of cherubism.


Asunto(s)
Enfermedades Óseas Metabólicas , Querubismo , Ratones , Animales , Querubismo/tratamiento farmacológico , Querubismo/genética , Factor de Necrosis Tumoral alfa/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Inflamación/patología , Fenotipo
14.
Biomedicines ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359248

RESUMEN

Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy.

15.
PLoS One ; 17(11): e0277307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395281

RESUMEN

Cysteinyl leukotriene receptor 1 (CysLTR1) is a G protein-coupled receptor for the inflammatory lipid mediators cysteinyl leukotrienes, which are involved in smooth muscle constriction, vascular permeability, and macrophage chemokine release. The Cysltr1 gene encoding CysLTR1 is expressed in the macrophage lineage, including osteoclasts, and the CysLTR1 antagonist Montelukast has been shown to suppress the formation of osteoclasts. However, it currently remains unclear whether CysLTR1 is involved in osteoclast differentiation and bone loss. Therefore, to clarify the role of CysLTR1 in osteoclastogenesis and pathological bone loss, we herein generated CysLTR1 loss-of-function mutant mice by disrupting the cysltr1 gene using the CRISPR-Cas9 system. These mutant mice had a frameshift mutation resulting in a premature stop codon (Cysltr1 KO) or an in-frame mutation causing the deletion of the first extracellular loop (Cysltr1Δ105). Bone marrow macrophages (BMM) from these mutant mice lost the intracellular flux of calcium in response to leukotriene D4, indicating that these mutants completely lost the activity of CysLTR1 without triggering genetic compensation. However, disruption of the Cysltr1 gene did not suppress the formation of osteoclasts from BMM in vitro. We also demonstrated that the CysLTR1 antagonist Montelukast suppressed the formation of osteoclasts without functional CysLTR1. On the other hand, disruption of the Cysltr1 gene partially suppressed the formation of osteoclasts stimulated by leukotriene D4 and did not inhibit that by glutathione, functioning as a substrate in the synthesis of cysteinyl leukotrienes. Disruption of the Cysltr1 gene did not affect ovariectomy-induced osteoporosis or lipopolysaccharide-induced bone resorption. Collectively, these results suggest that the CysLT-CysLTR1 axis is dispensable for osteoclast differentiation in vitro and pathological bone loss, while the leukotriene D4-CysTR1 axis is sufficient to stimulate osteoclast formation. We concluded that the effects of glutathione and Montelukast on osteoclast formation were independent of CysLTR1.


Asunto(s)
Resorción Ósea , Osteoclastos , Femenino , Ratones , Animales , Leucotrieno D4/farmacología , Resorción Ósea/genética , Resorción Ósea/patología , Leucotrienos , Glutatión/farmacología
16.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887169

RESUMEN

Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in RAW 264 cells. Considering that UKT exhibited the most potent effect, we examined its effect on RANKL-induced osteoclastogenesis, the induction of osteoclast apoptosis, and the mechanisms underlying its effects. UKT inhibits RANKL-induced osteoclast differentiation in the early stage and decreases osteoclast-related genes, including tartrate-resistant acid phosphatase (Trap), dendritic cell-specific transmembrane protein (Dcstamp), matrix metalloproteinase-9 (Mmp9), and cathepsin K (Ctsk). Specifically, UKT inhibits the nuclear factor of activated T cells 1 (NFATc1), which is essential for osteoclastogenesis. UKT increases Bcl6, which antagonizes NFATc1 and Dc-stamp, thereby blocking the progression of osteoclasts to maturation. UKT also decreased nuclear translocation by downregulating the activity of p65/NF-κB. In addition, UKT enhances mononuclear osteoclast apoptosis via activation of caspase-3. Herein, we demonstrate that UKT suppresses RANKL-mediated osteoclastogenesis via the Blimp1-Bcl6 and NF-κB signaling pathways and enhances mononuclear osteoclast apoptosis. Furthermore, UKT prevents bone loss in OVX mice. Thus, UKT might be a potential therapeutic agent for postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Apoptosis , Resorción Ósea/metabolismo , Diferenciación Celular , Femenino , Humanos , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6 , Ligando RANK/metabolismo , Ligando RANK/farmacología , Transducción de Señal
17.
J Prosthodont Res ; 66(1): 124-130, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34176850

RESUMEN

PURPOSE: Bone morphogenetic protein (BMP)-2 is a potent growth factor that is widely used in the orthopedic and dental fields for bone regeneration. However, recombinant human BMP-2 (rhBMP-2) products have not been legally approved in Japan. Recently, our research group succeeded in producing GMP-grade rhBMP-2 using the E. coli system (E-rhBMP-2) at the industrial level and developed E-rhBMP-2 adsorbed onto ß-TCP (E-rhBMP-2/ß-TCP) as an alternative material to autogenous bone grafts. Previous studies on the toxicity, pharmacokinetics, and optimal doses of E-rhBMP-2 have confirmed its safety and efficiency. However, comparative studies with standard treatment therapies are still necessary before clinical application in humans. Therefore, in this preclinical study, we compared the bone regeneration ability of E-rhBMP-2/ß-TCP and autogenous bone grafts in a canine guided-bone regeneration model. METHODS: Following extraction of the maxillary third premolar, box-type bone defects (10 mmL × 4 mmW × 9 mmH) were created in the extraction socket area and transplanted with E-rhBMP-2/ß-TCP or autogenous bone graft in a canine. After 8 weeks, micro-CT and histological analyses were performed. RESULTS: Transplantation of both E-rhBMP-2/ß-TCP and autogenous bone graft significantly promoted bone formation compared to the non-transplantation control group. The bone formation ability of E-rhBMP-2/ß-TCP was equal to that of the autogenous bone graft. Histological analysis showed that excessive infiltration of inflammatory cells and residual ß-TCP particles mostly were not observed in the E-rhBMP-2/ß-TCP transplantation group. CONCLUSION: This preclinical study demonstrated that E-rhBMP-2/ß-TCP and autogenous bone have equal potential to promote bone regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2 , Escherichia coli , Regeneración Ósea , Fosfatos de Calcio , Humanos , Equivalencia Terapéutica
18.
J Prosthodont Res ; 66(1): 184-192, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34053972

RESUMEN

PATIENT: A 54-year-old woman presenting with anterior alveolar ridge resorption was submitted to a connective tissue graft (CTG) for esthetic improvement before rehabilitation with a fixed partial denture. Palate-harvested connective tissue was used as a graft after extra-oral removal of the epithelium. Unexpectedly, complete wound healing was not observed. Moreover, 6 months post-surgery, a white discharge was detected at the grafted site. The adjacent tooth showing a root fracture was initially associated with the symptoms and was then extracted. Concomitantly, the unhealed tissue at the grafted site was also excised, leading to temporary symptom resolution. However, the white discharge reappeared after 2 months. The excision area was expanded to remove the grafted tissue entirely, and the wound was completely healed. Since the alveolar ridge resorption had become larger compared to the preoperative condition, the patient was subjected to a second CTG, now using a connective tissue harvested from the palate by a single incision technique. The wound healed uneventfully, and the final prosthesis was delivered 6 months after soft tissue stabilization. The patient has been followed-up for more than 28 months without any recurrence of white discharge. DISCUSSION: Histopathological and cytological examination detected keratinized epithelial tissues and cells, respectively, in excised tissues and white discharge specimens. Consequently, a possible relationship between white discharge and residual epithelium in the harvested graft was strongly suspected. CONCLUSION: Success of the CTG procedure requires careful method selection for tissue transplantation and treatment execution.


Asunto(s)
Pérdida de Hueso Alveolar , Aumento de la Cresta Alveolar , Tejido Conectivo , Dentadura Parcial Fija , Femenino , Encía , Humanos , Persona de Mediana Edad
19.
J Prosthodont Res ; 66(2): 250-257, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34470983

RESUMEN

PURPOSE: We aimed to determine root caries annual incidence (RCAI) and root caries annual progression (RCAP) and risk factors for them among older people requiring nursing care. METHODS: The target population comprised 186 dentate individuals aged ≥ 65 years who required nursing care while living in nursing homes (NHs) or their own homes (OHs) in Okayama, Japan. Survey items included presence/absence and severity of root caries, age, sex, living environment (NH or OH), the Clinical Dementia Rating, and the Barthel Index (BI). Baseline surveys were conducted from 2015 to 2017; subjects were followed up for one year. RCAI and RCAP per tooth and per person were calculated, and risk factors for them were identified using generalized estimating equations. RESULTS: In total, 104 individuals (mean age: 82.0 ± 12.4 years) completed the follow-up survey. RCAIs per tooth and per person were 14.6% (173/1188) and 59.6% (62/104), respectively. RCAP per tooth was 22.5% (51/227 teeth with root caries at baseline). Significant risk factors for RCAI were living environment (OH, odds ratio [OR]: 2.14), sex (male, OR: 1.84), clasped tooth (OR: 1.82), and older age (OR: 1.05) at baseline. Significant risk factors for RCAP were sex (male, OR: 5.20), regular dental checkup (OR: 2.74), and high BI score (OR: 1.02) at baseline. CONCLUSION: At one-year follow-up, 59.6% of the subjects developed at least one root caries. Risk factors for RCAI were living environment (OH), male, clasped tooth, and older age, whereas those for RCAP were male, regular dental checkup, and high BI score.


Asunto(s)
Caries Dental , Caries Radicular , Anciano , Anciano de 80 o más Años , Caries Dental/epidemiología , Femenino , Humanos , Incidencia , Masculino , Estudios Prospectivos , Factores de Riesgo , Caries Radicular/epidemiología
20.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884630

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is related to impaired bone healing conditions in the maxillomandibular bone region as a complication of bisphosphonate intake. Although there are several hypotheses for the onset of MRONJ symptoms, one of the possible causes is the inhibition of bone turnover and blood supply leading to bone necrosis. The optimal treatment strategy for MRONJ has not been established either. BMP-2, a member of the TGF-ß superfamily, is well known for regulating bone remodeling and homeostasis prenatally and postnatally. Therefore, the objectives of this study were to evaluate whether cyclophosphamide/zoledronate (CY/ZA) induces necrosis of the bone surrounding the tooth extraction socket, and to examine the therapeutic potential of BMP-2 in combination with the hard osteoinductive biomaterial, ß-tricalcium phosphate (ß-TCP), in the prevention and treatment of alveolar bone loss around the tooth extraction socket in MRONJ-like mice models. First, CY/ZA was intraperitoneally administered for three weeks, and alveolar bone necrosis was evaluated before and after tooth extraction. Next, the effect of BMP-2/ß-TCP was investigated in both MRONJ-like prevention and treatment models. In the prevention model, CY/ZA was continuously administered for four weeks after BMP-2/ß-TCP transplantation. In the treatment model, CY/ZA administration was suspended after transplantation of BMP-2/ß-TCP. The results showed that CY/ZA induced a significant decrease in the number of empty lacunae, a sign of bone necrosis, in the alveolar bone around the tooth extraction socket after tooth extraction. Histological analysis showed a significant decrease in the necrotic alveolar bone around tooth extraction sockets in the BMP-2/ß-TCP transplantation group compared to the non-transplanted control group in both MRONJ-like prevention and treatment models. However, bone mineral density, determined by micro-CT analysis, was significantly higher in the BMP-2/ß-TCP transplanted group than in the control group in the prevention model only. These results clarified that alveolar bone necrosis around tooth extraction sockets can be induced after surgical intervention under CY/ZA administration. In addition, transplantation of BMP-2/ß-TCP reduced the necrotic alveolar bone around the tooth extraction socket. Therefore, a combination of BMP-2/ß-TCP could be an alternative approach for both prevention and treatment of MRONJ-like symptoms.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/terapia , Proteína Morfogenética Ósea 2/administración & dosificación , Trasplante Óseo/métodos , Fosfatos de Calcio/administración & dosificación , Ciclofosfamida/toxicidad , Extracción Dental/efectos adversos , Factor de Crecimiento Transformador beta/administración & dosificación , Ácido Zoledrónico/toxicidad , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/terapia , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/etiología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/metabolismo , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Conservadores de la Densidad Ósea/toxicidad , Fosfatos de Calcio/farmacología , Difosfonatos/toxicidad , Modelos Animales de Enfermedad , Femenino , Inmunosupresores/toxicidad , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...