Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 23829, 2024 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394459

RESUMEN

The platelet-derived growth factor (PDGF) family contributes to the progression of steatohepatitis; however, changes in and the characteristics of isoform-specific expression remain unclear. Since diabetes is a major driver of metabolic dysfunction-associated steatohepatitis (MASH), we characterized the mouse model of diabetic MASH (dMASH) by focusing on PDGF signaling. Pdgfa-d expression was markedly higher in hepatic stellate cells among flow-sorted cells in control mice and also increased in dMASH. In contrast, a reanalysis of human single-cell RNA-Seq data showed the distinct distribution of each PDGF isoform with disease progression. Furthermore, inflammation and fibrosis in the liver were less severe in diabetic MASH using tamoxifen-induced PDGF receptor ß (PDGFRß)-deficient mice (KO) than in control dMASH using floxed mice (FL) at 12 weeks old. Despite the absence of tumors, the expression of tumor-related genes was lower in KO than in FL. Tumorigenesis was significantly lower in 20-week-old KO. An Ingenuity Pathway Analysis of differentially expressed miRNA between FL and KO identified functional networks associated with hepatotoxicity and cancer. Therefore, PDGFRß signals play important roles in the progression of steatohepatitis and tumorigenesis in MASH, with the modulation of miRNA expression posited as a potential underlying mechanism.


Asunto(s)
Carcinogénesis , Ratones Noqueados , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Animales , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Ratones , Carcinogénesis/genética , Carcinogénesis/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Modelos Animales de Enfermedad , Masculino , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Hígado/metabolismo , Hígado/patología , Células Estrelladas Hepáticas/metabolismo , Transducción de Señal , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética
2.
Mol Med ; 30(1): 21, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317079

RESUMEN

BACKGROUND: Pericytes are a vital component of the blood-brain barrier, and their involvement in acute inflammation was recently suggested. However, it remains unclear whether pericytes contribute to hypothalamic chronic inflammation and energy metabolism in obesity. The present study investigated the impact of pericytes on the pathophysiology of obesity by focusing on platelet-derived growth factor (PDGF) signaling, which regulates pericyte functions. METHODS: Tamoxifen-inducible systemic conditional PDGF receptor ß knockout mice (Pdgfrb∆SYS-KO) and Calcium/calmodulin-dependent protein kinase type IIa (CaMKIIa)-positive neuron-specific PDGF receptor ß knockout mice (Pdgfrb∆CaMKII-KO) were fed a high-fat diet, and metabolic phenotypes before and 3 to 4 weeks after dietary loading were examined. Intracellular energy metabolism and relevant signal transduction in lipopolysaccharide- and/or platelet-derived growth factor-BB (PDGF-BB)-stimulated human brain pericytes (HBPCs) were assessed by the Seahorse XFe24 Analyzer and Western blotting. The pericyte secretome in conditioned medium from HBPCs was studied using cytokine array kit, and its impact on polarization was examined in bone marrow-derived macrophages (BMDMs), which are microglia-like cells. RESULTS: Energy consumption increased and body weight gain decreased after high-fat diet loading in Pdgfrb∆SYS-KO mice. Cellular oncogene fos (cFos) expression increased in proopiomelanocortin (POMC) neurons, whereas microglial numbers and inflammatory gene expression decreased in the hypothalamus of Pdgfrb∆SYS-KO mice. No significant changes were observed in Pdgfrb∆CaMKII-KO mice. In HBPCs, a co-stimulation with lipopolysaccharide and PDGF-BB shifted intracellular metabolism towards glycolysis, activated mitogen-activated protein kinase (MAPK), and modulated the secretome to the inflammatory phenotype. Consequently, the secretome showed an increase in various proinflammatory chemokines and growth factors including Epithelial-derived neutrophil-activating peptide 78 (C-X-C motif chemokine ligand (CXCL)5), Thymus and activation-regulated chemokine (C-C motif chemokine (CCL)17), Monocyte chemoattractant protein 1 (CCL2), and Growth-regulated oncogene α (CXCL1). Furthermore, conditioned medium from HBPCs stimulated the inflammatory priming of BMDMs, and this change was abolished by the C-X-C motif chemokine receptor (CXCR) inhibitor. Consistently, mRNA expression of CXCL5 was elevated by lipopolysaccharide and PDGF-BB treatment in HBPCs, and the expression was significantly lower in the hypothalamus of Pdgfrb∆SYS-KO mice than in control Pdgfrbflox/flox mice (FL) following 4 weeks of HFD feeding. CONCLUSIONS: PDGF receptor ß signaling in hypothalamic pericytes promotes polarization of macrophages by changing their secretome and contributes to the progression of obesity.


Asunto(s)
Pericitos , Factor de Crecimiento Derivado de Plaquetas , Ratones , Humanos , Animales , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Pericitos/metabolismo , Becaplermina/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Medios de Cultivo Condicionados/metabolismo , Lipopolisacáridos , Transducción de Señal , Inflamación/metabolismo , Ratones Noqueados , Obesidad/metabolismo , Hipotálamo , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo
3.
BMC Biol ; 21(1): 150, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403071

RESUMEN

BACKGROUND: Biological aging is an important factor leading to the development of pathologies associated with metabolic dysregulation, including type 2 diabetes, cancer, cardiovascular and neurodegenerative diseases. Telomere length, a central feature of aging, has additionally been identified as inversely associated with glucose tolerance and the development of type 2 diabetes. However, the effects of shortened telomeres on body weight and metabolism remain incompletely understood. Here, we studied the metabolic consequences of moderate telomere shortening using second generation loss of telomerase activity in mice. RESULTS: Aged male and female G2 Terc-/- mice and controls were characterized with respect to body weight and composition, glucose homeostasis, insulin sensitivity and metabolic activity. This was complemented with molecular and histological analysis of adipose tissue, liver and the intestine as well as microbiota analysis. We show that moderate telomere shortening leads to improved insulin sensitivity and glucose tolerance in aged male and female G2 Terc-/- mice. This is accompanied by reduced fat and lean mass in both sexes. Mechanistically, the metabolic improvement results from reduced dietary lipid uptake in the intestine, characterized by reduced gene expression of fatty acid transporters in enterocytes of the small intestine. Furthermore, G2-Terc-/- mice showed significant alterations in the composition of gut microbiota, potentially contributing to the improved glucose metabolism. CONCLUSIONS: Our study shows that moderate telomere shortening reduces intestinal lipid absorption, resulting in reduced adiposity and improved glucose metabolism in aged mice. These findings will guide future murine and human aging studies and provide important insights into the age associated development of type 2 diabetes and metabolic syndrome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Telomerasa , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Peso Corporal , Ácidos Grasos , Glucosa/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Noqueados , Telomerasa/genética
4.
Nutr Metab (Lond) ; 20(1): 10, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774476

RESUMEN

AIM: MC903 is a synthetic derivative of vitamin D3 that has been designed to diminish its impact on calcium metabolism and is clinically used as a transdermal reagent for psoriasis. Animal studies showed that an oral or intraperitoneal vitamin D3 treatment prevented the development of obesity. In contrast, the bioavailability of orally administered vitamin D3 is reported to be low in obese patients. In the current study, we aimed to investigate the impact of a transdermal treatment with MC903 in established obese mice. We further studied the underlying mechanisms of MC903-mediated metabolic improvement. MATERIALS AND METHODS: Male C57BL/6 J mice were fed standard chow or a 60% high-fat diet (HFD) for 7 weeks, and a transdermal treatment with MC903 on the ear auricle was initiated thereafter. The metabolic profiles of mice were analyzed during 4 weeks of treatment, and mice were dissected for histological and gene expression analyses. The direct impacts of MC903 and vitamin D3 were investigated using 3T3-L1 adipocytes and C2C12 myotubes in vitro. RESULTS: HFD-fed mice showed significant increases in body and epididymal white adipose tissue (eWAT) weights with enlarged adipocytes. They exhibited glucose intolerance, decreased oxygen consumption, and chronic inflammation in eWAT. The transdermal treatment with MC903 significantly ameliorated these metabolic abnormalities in HFD-fed mice without affecting food consumption. In accordance with enhanced energy metabolism, myofiber diameters and the expression of uncoupling protein 3 (UCP3) in the gastrocnemius and soleus muscle were significantly increased in MC903-treated HFD mice. In addition, vitamin D3 and MC903 both suppressed adipogenic differentiation and enhanced lipolysis in 3T3-L1 adipocytes, and increased UCP3 expression in cultured C2C12 myotubes. Furthermore, MC903 increased oxygen consumption and UCP3 knockdown significantly decreased them in C2C12 myotubes. CONCLUSIONS: A transdermal treatment with MC903 increased myofiber diameter and energy metabolism and decreased visceral fat accumulation, thereby improving obesity and glucose intolerance in mice.

5.
Cell Rep ; 41(3): 111497, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261021

RESUMEN

Non-alcoholic steatohepatitis (NASH) occasionally occurs under obesity; however, factors modulating the natural history of fatty liver disease remain unknown. Since hypothalamic orexin that regulates physical activity and autonomic balance prevents obesity, we investigate its role in NASH development. Male orexin-deficient mice fed a high-fat diet (HFD) show severe obesity and progression of NASH with fibrosis in the liver. Hepatic fibrosis also develops in ovariectomized orexin-deficient females fed an HFD but not ovariectomized wild-type controls. Moreover, long-term HFD feeding causes hepatocellular carcinoma (HCC) in orexin-deficient mice. Intracerebroventricular injection of orexin A or pharmacogenetic activation of orexin neurons acutely activates hepatic mTOR-sXbp1 pathway to prevent endoplasmic reticulum (ER) stress, a NASH-causing factor. Daily supplementation of orexin A attenuates hepatic ER stress and inflammation in orexin-deficient mice fed an HFD, and autonomic ganglionic blocker suppresses the orexin actions. These results suggest that hypothalamic orexin is an essential factor for preventing NASH and associated HCC under obesity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Femenino , Ratones , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinoma Hepatocelular/prevención & control , Orexinas , Neoplasias Hepáticas/prevención & control , Obesidad/complicaciones , Serina-Treonina Quinasas TOR
6.
Nutrients ; 14(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35565889

RESUMEN

Weight regain after fasting, often exceeding the pre-fasting weight, is a common phenomenon and big problem for the treatment of obesity. Thus, novel interventions maintaining reduced body weight are critically important to prevent metabolic disease. Here we investigate the metabolic effects of dietary L-serine supplementation, known to modulate various organ functions. C57BL/6N-Rj male mice were supplemented with or without 1% L-serine in their drinking water and fed with a chow or high-fat diet. Mice were fed either ad libitum or subjected to repeated overnight fasting. Body weight, body composition, glucose tolerance and energy metabolism were assessed. This was combined with a detailed analysis of the liver and adipose tissues, including the use of primary brown adipocytes to study mitochondrial respiration and protein expression. We find that L-serine supplementation has little impact on systemic metabolism in ad libitum-fed mice. Conversely, L-serine supplementation blunted fasting-induced body weight regain, especially in diet-induced obese mice. This reduction in body weight regain is likely due to the increased energy expenditure, based on elevated brown adipose tissue activity. Thus, L-serine supplementation during and after weight-loss could reduce weight regain and thereby help tackle one of the major problems of current obesity therapies.


Asunto(s)
Tejido Adiposo Pardo , Ayuno , Tejido Adiposo Pardo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Metabolismo Energético , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Obesidad/metabolismo , Obesidad/prevención & control , Serina/metabolismo , Serina/farmacología , Termogénesis , Aumento de Peso
7.
Trends Endocrinol Metab ; 33(7): 493-506, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35491296

RESUMEN

Brown adipose tissue (BAT) is often considered as a sink for nutrients to generate heat. However, when the complex hormonal and nervous inputs and intracellular signaling networks regulating substrate utilization are considered, BAT appears much more as a tightly controlled rheostat, regulating body temperature and balancing circulating nutrient levels. Here we provide an overview of key regulatory circuits, including the diurnal rhythm, determining glucose, fatty acid, and amino acid utilization and the interdependency of these nutrients in thermogenesis. Moreover, we discuss additional factors mediating sympathetic BAT activation beyond ß-adrenergic signaling and the limitations of glucose-based BAT activity measurements to foster a better understanding and interpretation of BAT activity data.


Asunto(s)
Adipocitos Marrones , Termogénesis , Adipocitos Marrones/fisiología , Tejido Adiposo Pardo/metabolismo , Glucosa/metabolismo , Humanos , Termogénesis/genética
8.
Mol Metab ; 61: 101508, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513259

RESUMEN

OBJECTIVE: Brown adipocytes play a key role in maintaining body temperature as well as glucose and lipid homeostasis. However, brown adipocytes need to adapt their thermogenic activity and substrate utilization to changes in nutrient availability. Amongst the multiple factors influencing brown adipocyte activity, autophagy is an important regulatory element of thermogenic capacity and activity. Nevertheless, a specific sensing mechanism of extracellular amino acid availability linking autophagy to nutrient availability in brown adipocytes is unknown. METHODS: To characterize the role of the amino acid transporter PAT2/SLC36A2 in brown adipocytes, loss or gain of function of PAT2 were studied with respect to differentiation, subcellular localization, lysosomal activity and autophagy. Activity of vATPase was evaluated by quenching of EGFP fused to LC3 or FITC-dextran loaded lysosomes in brown adipocytes upon amino acid starvation, whereas the effect of PAT2 on assembly of the vATPase was investigated by Native-PAGE. RESULTS: We show that PAT2 translocates from the plasma membrane to the lysosome in response to amino acid withdrawal. Loss or overexpression of PAT2 impair lysosomal acidification and starvation-induced S6K re-phosphorylation, as PAT2 facilitates the assembly of the lysosomal vATPase, by recruitment of the cytoplasmic V1 subunit to the lysosome. CONCLUSIONS: PAT2 is an important sensor of extracellular amino acids and regulator of lysosomal acidification in brown adipocytes.


Asunto(s)
Adipocitos Marrones , Lisosomas , Adipocitos Marrones/metabolismo , Aminoácidos/metabolismo , Homeostasis , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo
9.
Gut ; 71(11): 2147-2148, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725198

Asunto(s)
Colitis , Intestinos , Humanos
10.
Diabetologia ; 64(7): 1660-1673, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33796910

RESUMEN

AIMS/HYPOTHESIS: The imbalance between maternal insulin resistance and a relative lack of insulin secretion underlies the pathogenesis of gestational diabetes mellitus (GDM). Alterations in T cell subtypes and increased levels of circulating proinflammatory cytokines have been proposed as potential mechanisms underlying the pathophysiology of insulin resistance in GDM. Since oestrogen modulates T cell immunity, we hypothesised that oestrogen plays a homeostatic role in visceral adipose tissue by coordinating T cell immunity through oestrogen receptor α (ERα) in T cells to prevent GDM. METHODS: Female CD4-cre ERαfl/fl (KO) mice on a C57BL/6 background with ERα ablation specifically in T cells, and ERαfl/fl (ERα-floxed [FL]) mice were fed 60 kJ% high-fat diet (HFD) for 4 weeks. Female mice mated with male BALB/c mice to achieve allogenic pregnancy and were maintained on an HFD to generate the GDM model. Mice were divided into four experimental groups: non-pregnant FL, non-pregnant KO, pregnant FL (FL-GDM) and pregnant KO (KO-GDM). GTTs and ITTs were performed on day 12.5 or 13.5 and 16.5 after breeding, respectively. On day 18.5 after breeding, mice were killed and T cell subsets in the gonadal white adipose tissue (gWAT) and spleen were analysed using flow cytometry. Histological examination was also conducted and proinflammatory gene expression in gWAT and the liver was evaluated. RESULTS: KO mice that mated with BALB/c mice showed normal fertility rates and fetal weights as compared with FL mice. Body and tissue weights were similar between FL and KO mice. When compared with FL-GDM mice, KO-GDM mice showed decreased insulin secretion (serum insulin concentration 15 min after glucose loading: 137.3 ± 18.3 pmol/l and 40.1 ± 36.5 pmol/l, respectively; p < 0.05), impaired glucose tolerance (glucose AUC in GTT: 2308.3 ± 54.0 mmol/l × min and 2620.9 ± 122.1 mmol/l × min, respectively; p < 0.05) and increased numbers of T helper (Th)17 cells in gWAT (0.4 ± 0.0% vs 0.8 ± 0.1%; p < 0.05). However, the contents of Th1 and regulatory T cells (Tregs) in gWAT remained similar between FL-GDM and KO-GDM. Glucose-stimulated insulin secretion was similar between isolated islets derived from FL and KO mice, but was reduced by IL-17A treatment. Moreover, the levels of proinflammatory gene expression, including expression of Emr1 and Tnfa in gWAT, were significantly higher in KO-GDM mice than in FL-GDM mice (5.1-fold and 2.7-fold, respectively; p < 0.01 for both). Furthermore, KO-GDM mice showed increased expression of genes encoding hepatokines, Ahsg and Fgf21 (both were 2.4-fold higher vs FL-GDM mice; p < 0.05 and p = 0.09, respectively), with no changes in inflammatory gene expression (e.g., Tnfa and Ifng) in the liver compared with FL-GDM mice. CONCLUSIONS/INTERPRETATION: Deletion of ERα in T cells caused impaired maternal adaptation of insulin secretion, changes in hepatokine profiles, and enhanced chronic inflammation in gWAT alongside an abnormal increase in Th17 cells. These results suggest that the ERα-mediated oestrogen signalling effects in T cells regulate T cell immunity and contribute to glucose homeostasis in pregnancy.


Asunto(s)
Diabetes Gestacional , Receptor alfa de Estrógeno/metabolismo , Glucosa/metabolismo , Linfocitos T/inmunología , Animales , Diabetes Gestacional/genética , Diabetes Gestacional/inmunología , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patología , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/fisiología , Femenino , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Linfocitos T/metabolismo
11.
Mol Metab ; 45: 101147, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359386

RESUMEN

OBJECTIVE: Reorganization of the extracellular matrix is a prerequisite for healthy adipose tissue expansion, whereas fibrosis is a key feature of adipose dysfunction and inflammation. However, very little is known about the direct effects of impaired cell-matrix interaction in adipocyte function and insulin sensitivity. The objective of this study was to determine whether integrin activity can regulate insulin sensitivity in adipocytes and thereby systemic metabolism. METHODS: We characterized integrin activity in adipose tissue and its consequences on whole-body metabolism using adipose-selective deletion of ß1 integrin (Itgb1adipo-cre) and Kindlin-2 (Kind2adipo-cre) in mice. RESULTS: We demonstrate that integrin signaling regulates white adipocyte insulin action and systemic metabolism. Consequently, loss of adipose integrin activity, similar to loss of adipose insulin receptors, results in a lipodystrophy-like phenotype and systemic insulin resistance. However, brown adipose tissue of Kind2adipo-cre and Itgb1adipo-cre mice is chronically hyperactivated and has increased substrate delivery, reduced endothelial basement membrane thickness, and increased endothelial vesicular transport. CONCLUSIONS: Thus, we establish integrin-extracellular matrix interactions as key regulators of white and brown adipose tissue function and whole-body metabolism.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Resistencia a la Insulina , Integrinas/metabolismo , Adipocitos Blancos/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Dieta , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Lipodistrofia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal , Termogénesis/genética
12.
Angiogenesis ; 23(4): 667-684, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32699964

RESUMEN

Platelet-derived growth factor-B (PDGF-B) is a main factor to promote adipose tissue angiogenesis, which is responsible for the tissue expansion in obesity. In this process, PDGF-B induces the dissociation of pericytes from blood vessels; however, its regulatory mechanism remains unclear. In the present study, we found that stromal cell-derived factor 1 (SDF1) plays an essential role in this regulatory mechanism. SDF1 mRNA was increased in epididymal white adipose tissue (eWAT) of obese mice. Ex vivo pharmacological analyses using cultured adipose tissue demonstrated that physiological concentrations (1-100 pg/mL) of SDF1 inhibited the PDGF-B-induced pericyte dissociation from vessels via two cognate SDF1 receptors, CXCR4 and CXCR7. In contrast, higher concentrations (> 1 ng/mL) of SDF1 alone caused the dissociation of pericytes via CXCR4, and this effect disappeared in the cultured tissues from PDGF receptor ß (PDGFRß) knockout mice. To investigate the role of SDF1 in angiogenesis in vivo, the effects of anagliptin, an inhibitor of dipeptidyl peptidase 4 (DPP4) that degrades SDF1, were examined in mice fed a high-fat diet. Anagliptin increased the SDF1 levels in the serum and eWAT. These changes were associated with a reduction of pericyte dissociation and fat accumulation in eWAT. AMD3100, a CXCR4 antagonist, cancelled these anagliptin effects. In flow-cytometry analysis, anagliptin increased and decreased the PDGF-B expression in endothelial cells and macrophages, respectively, whereas anagliptin reduced the PDGFRß expression in pericytes of eWAT. These results suggest that SDF1 negatively regulates the adipose tissue angiogenesis in obesity by altering the reactivity of pericytes to PDGF-B.


Asunto(s)
Tejido Adiposo Blanco/patología , Tejido Adiposo Blanco/fisiopatología , Quimiocina CXCL12/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Remodelación Vascular , Tejido Adiposo Blanco/irrigación sanguínea , Inductores de la Angiogénesis/metabolismo , Animales , Vasos Sanguíneos/patología , Quimiocina CXCL12/sangre , Dieta Alta en Grasa , Epidídimo/patología , Conducta Alimentaria , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Pericitos/patología , Pirimidinas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Delgadez/patología
13.
Biochem J ; 477(13): 2509-2541, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32648930

RESUMEN

Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.


Asunto(s)
Tejido Adiposo/metabolismo , Epítopos/inmunología , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Humanos , Resistencia a la Insulina/fisiología
14.
PLoS One ; 15(4): e0230885, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240221

RESUMEN

Regulatory T cells (Treg) play essential roles in maintaining immune homeostasis. Resident Treg in visceral adipose tissue (VAT-Treg) decrease in male obese mice, which leads to the development of obesity-associated chronic inflammations and insulin resistance. Although gender differences in immune responses have been reported, the effects of the difference in metabolic environment on VAT-Treg are unclear. We investigated the localization of VAT-Treg in female mice in comparison with that in male mice. On a high-fat diet (HFD), VAT-Treg decreased in male mice but increased in female mice. The increase was abolished in ovariectomized and HFD-fed mice, but was restored by estrogen supplementation. The IL33 receptor ST2, which is important for the localization and maturation of VAT-Treg in males, was reduced in CD4+CD25+ T cells isolated from gonadal fat of obese mice of both genders, suggesting that a different system exists for VAT-Treg localization in females. Extensive analysis of chemokine expression in gonadal fat and adipose CD4+CD25+T cells revealed several chemokine signals related to female-specific VAT-Treg accumulation such as CCL24, CCR6, and CXCR3. Taken together, the current study demonstrated sexual dimorphism in VAT-Treg localization in obese mice. Estrogen may attenuate obesity-associated chronic inflammation partly through altering chemokine-related VAT-Treg localization in females.


Asunto(s)
Estrógenos/metabolismo , Obesidad/inmunología , Linfocitos T Reguladores/metabolismo , Tejido Adiposo/metabolismo , Adiposidad , Animales , Dieta Alta en Grasa , Estradiol/farmacología , Estrógenos/inmunología , Femenino , Inflamación/metabolismo , Resistencia a la Insulina/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Grasa Intraabdominal/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factores Sexuales , Linfocitos T Reguladores/inmunología
15.
J Cachexia Sarcopenia Muscle ; 11(1): 241-258, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32003547

RESUMEN

BACKGROUND: Skeletal muscle is mainly responsible for insulin-stimulated glucose disposal. Dysfunction in skeletal muscle metabolism especially during obesity contributes to the insulin resistance. Astaxanthin (AX), a natural antioxidant, has been shown to ameliorate hepatic insulin resistance in obese mice. However, its effects in skeletal muscle are poorly understood. The current study aimed to investigate the molecular target of AX in ameliorating skeletal muscle insulin resistance. METHODS: We fed 6-week-old male C57BL/6J mice with normal chow (NC) or NC supplemented with AX (NC+AX) and high-fat-diet (HFD) or HFD supplemented with AX for 24 weeks. We determined the effect of AX on various parameters including insulin sensitivity, glucose uptake, inflammation, kinase signaling, gene expression, and mitochondrial function in muscle. We also determined energy metabolism in intact C2C12 cells treated with AX using the Seahorse XFe96 Extracellular Flux Analyzer and assessed the effect of AX on mitochondrial oxidative phosphorylation and mitochondrial biogenesis. RESULTS: AX-treated HFD mice showed improved metabolic status with significant reduction in blood glucose, serum total triglycerides, and cholesterol (p< 0.05). AX-treated HFD mice also showed improved glucose metabolism by enhancing glucose incorporation into peripheral target tissues, such as the skeletal muscle, rather than by suppressing gluconeogenesis in the liver as shown by hyperinsulinemic-euglycemic clamp study. AX activated AMPK in the skeletal muscle of the HFD mice and upregulated the expressions of transcriptional factors and coactivator, thereby inducing mitochondrial remodeling, including increased mitochondrial oxidative phosphorylation component and free fatty acid metabolism. We also assessed the effects of AX on mitochondrial biogenesis in the siRNA-mediated AMPK-depleted C2C12 cells and showed that the effect of AX was lost in the genetically AMPK-depleted C2C12 cells. Collectively, AX treatment (i) significantly ameliorated insulin resistance and glucose intolerance through regulation of AMPK activation in the muscle, (ii) stimulated mitochondrial biogenesis in the muscle, (iii) enhanced exercise tolerance and exercise-induced fatty acid metabolism, and (iv) exerted antiinflammatory effects via its antioxidant activity in adipose tissue. CONCLUSIONS: We concluded that AX treatment stimulated mitochondrial biogenesis and significantly ameliorated insulin resistance through activation of AMPK pathway in the skeletal muscle.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fibrinolíticos/uso terapéutico , Resistencia a la Insulina/fisiología , Mitocondrias Musculares/metabolismo , Animales , Fibrinolíticos/farmacología , Humanos , Masculino , Ratones , Biogénesis de Organelos , Xantófilas/farmacología , Xantófilas/uso terapéutico
16.
Sci Rep ; 10(1): 670, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959796

RESUMEN

Adipose tissue macrophages (ATMs) play a central role in tissue remodeling and homeostasis. However, whether ATMs promote adipose angiogenesis in obesity remains unclear. We examined the impact of ATMs deletion on adipose angiogenesis and tissue expansion in the epididymal white adipose tissue (eWAT) of high-fat diet (HFD)-fed mice by using liposome-encapsulated clodronate. We further elucidated the induction mechanisms of platelet-derived growth factor (PDGF)-B in macrophages in response to obesity-associated metabolic stresses, since it plays a significant role in the regulation of pericyte behavior for the initiation of neoangiogenesis during tissue expansion. ATM depletion prevented adipose tissue expansion in HFD-fed mice by inhibiting pericyte detachment from vessels, resulting in less vasculature in eWAT. The lipopolysaccharide (LPS) stimulation and high glucose concentration augmented glucose incorporation and glycolytic capacity with the induction of Pdgfb mRNA. This effect was mediated through extracellular signal-regulated kinase (ERK) among mitogen-activated protein kinases coupled with glycolysis in RAW264.7 macrophages. The Pdgfb induction system was distinct from that of inflammatory cytokines mediated by mechanistic target of rapamycin complex 1 (mTORC1) and NFκB signaling. Thus, obesity-associated hyperglycemia and chronic inflammation fuels ERK signaling coupled with glycolysis in pro-inflammatory macrophages, which contribute to the expansion of eWAT through PDGF-B-dependent vascular remodeling.


Asunto(s)
Tejido Adiposo Blanco/irrigación sanguínea , Tejido Adiposo Blanco/citología , Glucólisis , Macrófagos/fisiología , Neovascularización Patológica , Obesidad/patología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Remodelación Vascular/genética , Animales , Dieta Alta en Grasa/efectos adversos , Glucólisis/genética , Inflamación , Linfocinas/genética , Linfocinas/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , FN-kappa B/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células RAW 264.7 , ARN Mensajero/metabolismo , Transducción de Señal
17.
J Endocrinol ; 235(3): 179-191, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28855315

RESUMEN

Obesity-associated activation of the renin-angiotensin-aldosterone system is implicated in the pathogenesis of insulin resistance; however, influences of mineralocorticoid receptor (MR) inhibition remain unclear. Therefore, we aimed to clarify the anti-inflammatory mechanisms of MR inhibition using eplerenone, a selective MR antagonist, in C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks. Eplerenone prevented excessive body weight gain and fat accumulation, ameliorated glucose intolerance and insulin resistance and enhanced energy metabolism. In the epididymal white adipose tissue (eWAT), eplerenone prevented obesity-induced accumulation of F4/80+CD11c+CD206--M1-adipose tissue macrophage (ATM) and reduction of F4/80+CD11c-CD206+-M2-ATM. Interestingly, M1-macrophage exhibited lower expression levels of MR, compared with M2-macrophage, in the ATM of eWAT and in vitro-polarized bone marrow-derived macrophages (BMDM). Importantly, eplerenone and MR knockdown attenuated the increase in the expression levels of proIl1b, Il6 and Tnfa, in the eWAT and liver of HFD-fed mice and LPS-stimulated BMDM. Moreover, eplerenone suppressed IL1b secretion from eWAT of HFD-fed mice. To reveal the anti-inflammatory mechanism, we investigated the involvement of NLRP3-inflammasome activation, a key process of IL1b overproduction. Eplerenone suppressed the expression of the inflammasome components, Nlrp3 and Caspase1, in the eWAT and liver. Concerning the second triggering factors, ROS production and ATP- and nigericin-induced IL1b secretion were suppressed by eplerenone in the LPS-primed BMDM. These results indicate that eplerenone inhibited both the priming and triggering signals that promote NLRP3-inflammasome activation. Therefore, we consider MR to be a crucial target to prevent metabolic disorders by suppressing inflammasome-mediated chronic inflammation in the adipose tissue and liver under obese conditions.


Asunto(s)
Intolerancia a la Glucosa/prevención & control , Inflamación/prevención & control , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Obesidad/complicaciones , Espironolactona/análogos & derivados , Tejido Adiposo Blanco/patología , Animales , Citocinas/metabolismo , Dieta Alta en Grasa , Evaluación Preclínica de Medicamentos , Metabolismo Energético/efectos de los fármacos , Eplerenona , Intolerancia a la Glucosa/etiología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/etiología , Hígado/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Obesidad/patología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacología , Espironolactona/uso terapéutico
18.
Diabetes ; 66(4): 1008-1021, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28122789

RESUMEN

Platelet-derived growth factor (PDGF) is a key factor in angiogenesis; however, its role in adult obesity remains unclear. In order to clarify its pathophysiological role, we investigated the significance of PDGF receptor ß (PDGFRß) in adipose tissue expansion and glucose metabolism. Mature vessels in the epididymal white adipose tissue (eWAT) were tightly wrapped with pericytes in normal mice. Pericyte desorption from vessels and the subsequent proliferation of endothelial cells were markedly increased in the eWAT of diet-induced obese mice. Analyses with flow cytometry and adipose tissue cultures indicated that PDGF-B caused the detachment of pericytes from vessels in a concentration-dependent manner. M1-macrophages were a major type of cells expressing PDGF-B in obese adipose tissue. In contrast, pericyte detachment was attenuated and vascularity within eWAT was reduced in tamoxifen-inducible conditional Pdgfrb-knockout mice with decreases in adipocyte size and chronic inflammation. Furthermore, Pdgfrb-knockout mice showed enhanced energy expenditure. Consequently, diet-induced obesity and the associated deterioration of glucose metabolism in wild-type mice were absent in Pdgfrb-knockout mice. Therefore, PDGF-B-PDGFRß signaling plays a significant role in the development of adipose tissue neovascularization and appears to be a fundamental target for the prevention of obesity and type 2 diabetes.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Proliferación Celular/genética , Células Endoteliales/citología , Glucosa/metabolismo , Neovascularización Patológica/genética , Obesidad/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Remodelación Vascular/genética , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/irrigación sanguínea , Animales , Western Blotting , Dieta Alta en Grasa , Citometría de Flujo , Técnica de Clampeo de la Glucosa , Macrófagos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Obesidad/metabolismo , Pericitos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal
19.
Eur J Pharmacol ; 707(1-3): 120-9, 2013 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-23528355

RESUMEN

Cilostazol, an inhibitor of phosphodiesterase 3B, is widely used as an anti-platelet drug in diabetic patients. Recently, cilostazol has been shown to promote preadipocyte differentiation to mature adipocyte and affect glucose homeostasis; therefore, we examined the impact of cilostazol on impaired glucose metabolism in adipose tissues of diabetic db/db mice. Administration of cilostazol at 100-300 mg/kg/day significantly improved glucose tolerance and insulin sensitivity in a dose-dependent manner in db/db mice, whereas these effects were not observed in non-diabetic control mice. Cilostazol reduced the adipocyte size and suppressed mRNA expressions of monocyte chemoattractant protein 1, CD11c, and tumor necrosis factor α (TNFα) in the epididymal fat tissue of db/db mice. As for the cellular mechanism, cilostazol attenuated lipopolysaccharide (LPS)-induced TNFα expression by decreasing the mRNA and protein levels of Toll-like receptor 4 in Raw264.3 macrophages. Cilostazol also effectively ameliorated the TNFα-induced decrease of insulin-stimulated Akt phosphorylation and [(3)H]2-deoxyglucose uptake by suppressing c-Jun N terminal kinase-mediated serine phosphorylation of insulin receptor substrate 1 in 3T3-L1 adipocytes. Importantly, the improvement of impaired insulin signaling was blunted by pretreatment with KT5720, a protein kinase A inhibitor, but not with GW9662, a peroxisome proliferator-activated receptor γ. These results indicate that cilostazol suppressed TNFα production from macrophages and attenuated TNFα-induced chronic inflammation in adipose tissue, leading to the improvement of glucose intolerance and insulin resistance in obese diabetic mice. Thus, the present study reveals an additional benefit in the use of cilostazol in the treatment of patients with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 3/farmacología , Tetrazoles/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Enfermedad Crónica , Cilostazol , Diabetes Mellitus Experimental/fisiopatología , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Inflamación/patología , Resistencia a la Insulina , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Inhibidores de Fosfodiesterasa 3/administración & dosificación , ARN Mensajero/metabolismo , Tetrazoles/administración & dosificación , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...