Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 23(8)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34441189

RESUMEN

In the present paper, we investigate the fundamental trade-off of identification, secret-key, storage, and privacy-leakage rates in biometric identification systems for remote or hidden Gaussian sources. We use a technique of converting the system to one where the data flow is in one-way direction to derive the capacity region of these rates. Also, we provide numerical calculations of three different examples for the system. The numerical results imply that it seems hard to achieve both high secret-key and small privacy-leakage rates simultaneously.

2.
Entropy (Basel) ; 21(5)2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33267183

RESUMEN

In this paper, we propose a new theoretical security model for Shannon cipher systems under side-channel attacks, where the adversary is not only allowed to collect ciphertexts by eavesdropping the public communication channel but is also allowed to collect the physical information leaked by the devices where the cipher system is implemented on, such as running time, power consumption, electromagnetic radiation, etc. Our model is very robust as it does not depend on the kind of physical information leaked by the devices. We also prove that in the case of one-time pad encryption, we can strengthen the secrecy/security of the cipher system by using an appropriate affine encoder. More precisely, we prove that for any distribution of the secret keys and any measurement device used for collecting the physical information, we can derive an achievable rate region for reliability and security such that if we compress the ciphertext using an affine encoder with a rate within the achievable rate region, then: (1) anyone with a secret key will be able to decrypt and decode the ciphertext correctly, but (2) any adversary who obtains the ciphertext and also the side physical information will not be able to obtain any information about the hidden source as long as the leaked physical information is encoded with a rate within the rate region. We derive our result by adapting the framework of the one helper source coding problem posed and investigated by Ahlswede and Körner (1975) and Wyner (1975). For reliability and security, we obtain our result by combining the result of Csizár (1982) on universal coding for a single source using linear codes and the exponential strong converse theorem of Oohama (2015) for the one helper source coding problem.

3.
Entropy (Basel) ; 21(6)2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-33267263

RESUMEN

The well-known Hölder's inequality has been recently utilized as an essential tool for solving several optimization problems. However, such an essential role of Hölder's inequality does not seem to have been reported in the context of generalized entropy, including Rényi-Tsallis entropy. Here, we identify a direct link between Rényi-Tsallis entropy and Hölder's inequality. Specifically, we demonstrate yet another elegant proof of the Rényi-Tsallis entropy maximization problem. Especially for the Tsallis entropy maximization problem, only with the equality condition of Hölder's inequality is the q-Gaussian distribution uniquely specified and also proved to be optimal.

4.
Entropy (Basel) ; 21(6)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33267281

RESUMEN

We consider the one helper source coding problem posed and investigated by Ahlswede, Körner and Wyner. Two correlated sources are separately encoded and are sent to a destination where the decoder wishes to decode one of the two sources with an arbitrary small error probability of decoding. In this system, the error probability of decoding goes to one as the source block length n goes to infinity. This implies that we have a strong converse theorem for the one helper source coding problem. In this paper, we provide the much stronger version of this strong converse theorem for the one helper source coding problem. We prove that the error probability of decoding tends to one exponentially and derive an explicit lower bound of this exponent function.

5.
Entropy (Basel) ; 21(8)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-33267494

RESUMEN

In this paper, we propose a theoretical framework to analyze the secure communication problem for broadcasting two encrypted sources in the presence of an adversary which launches side-channel attacks. The adversary is not only allowed to eavesdrop the ciphertexts in the public communication channel, but is also allowed to gather additional information on the secret keys via the side-channels, physical phenomenon leaked by the encryption devices during the encryption process, such as the fluctuations of power consumption, heat, or electromagnetic radiation generated by the encryption devices. Based on our framework, we propose a countermeasure against such adversary by using the post-encryption-compression (PEC) paradigm, in the case of one-time-pad encryption. We implement the PEC paradigm using affine encoders constructed from linear encoders and derive the explicit the sufficient conditions to attain the exponential decay of the information leakage as the block lengths of encrypted sources become large. One interesting feature of the proposed countermeasure is that its performance is independent from the type of side information leaked by the encryption devices.

6.
Entropy (Basel) ; 20(5)2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33265442

RESUMEN

We consider the rate distortion problem with side information at the decoder posed and investigated by Wyner and Ziv. Using side information and encoded original data, the decoder must reconstruct the original data with an arbitrary prescribed distortion level. The rate distortion region indicating the trade-off between a data compression rate R and a prescribed distortion level Δ was determined by Wyner and Ziv. In this paper, we study the error probability of decoding for pairs of ( R , Δ ) outside the rate distortion region. We evaluate the probability of decoding such that the estimation of source outputs by the decoder has a distortion not exceeding a prescribed distortion level Δ . We prove that, when ( R , Δ ) is outside the rate distortion region, this probability goes to zero exponentially and derive an explicit lower bound of this exponent function. On the Wyner-Ziv source coding problem the strong converse coding theorem has not been established yet. We prove this as a simple corollary of our result.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...