Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(14): 5476-5482, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37011406

RESUMEN

Trehalose is a disaccharide and is often foliar applied by farmers aiming at increasing stress resistance or crop production. However, the physiological effect of exogenously applied trehalose on crops remains obscure. Here, we explored the effect of foliar trehalose application on style length of solanaceous crops, Solanum melongena and S. lycopersicum. Trehalose application promotes pistil to stamen ratio by gaining style length. Another disaccharide consisting of two glucose molecules, maltose, showed the same effect on style length of S. lycopersicum, while monosaccharide glucose did not. Trehalose is found to affect style length through uptake via roots or interaction with rhizosphere but not through absorption by shoots in S. lycopersicum. Our study suggests that yield improvement of solanaceous crops by trehalose application under stressed conditions is brought about by suppression of the occurrence of short-styled flowers. This study suggests that trehalose holds potential to act as a plant biostimulant in preventing short-styled flowers in solanaceous crops.


Asunto(s)
Disacáridos , Trehalosa , Productos Agrícolas , Glucosa , Flores
2.
J Plant Res ; 134(5): 1139-1148, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34142247

RESUMEN

It is known that rice roots take up cadmium (Cd) via the symplastic route mediated by membrane-bound mineral transporters. Here we provide evidence that apoplastic bypass flow is another Cd uptake route in rice. High concentrations of Cd rendered apoplastic bypass flow rate increased in rice seedlings. These concentrations of Cd compromised membrane integrity in the root meristem and transition zone. Polyethleneglycol and proline inhibited the Cd-induced apoplastic bypass flow and Cd transfer to the shoots. Loss-of-function mutant of the Cd uptake transporter, nramp5, showed Cd transport to the shoot comparable to the wild type. At a low Cd concentration, increased apoplastic bypass flow rate by NaCl stress resulted in an elevation of Cd transport to shoots both in the wildtype and nramp5. These observations indicate that apoplastic bypass flow in roots carries Cd transport leading to xylem loading of Cd in addition to the symplastic pathway mediated by mineral transporters under stressed conditions.


Asunto(s)
Cadmio , Oryza , Transporte Biológico , Oryza/genética , Raíces de Plantas , Plantones
3.
Chemosphere ; 247: 125933, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32079055

RESUMEN

Toxicity Identification Evaluation (TIE) is a useful method for the classification and identification of toxicants in a composite environment water sample. However, its extension to a larger sample size has been restrained owing to the limited throughput of toxicity bioassays. Here we reported the development of a high-throughput method of TIE Phase I. This newly developed method was assisted by the fluorescence-based cellular oxidation (CO) biosensor fabricated with roGFP2-expressing bacterial cells in 96-well microplate format. The assessment of four river water samples from Langat river basin by this new method demonstrated that the contaminant composition of the four samples can be classified into two distinct groups. The entire toxicity assay consisted of 2338 tests was completed within 12 h with a fluorescence microplate reader. Concurrently, the sample volume for each assay was reduced to 50 µL, which is 600 to 4700 times lesser to compare with conventional bioassays. These imply that the throughput of the CO biosensor-assisted TIE Phase I is now feasible for constructing a large-scale toxicity monitoring system, which would cover a whole watershed scale.


Asunto(s)
Técnicas Biosensibles , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Bioensayo , Monitoreo del Ambiente/métodos , Agua Dulce , Sustancias Peligrosas , Ríos/química , Contaminantes Químicos del Agua/análisis
4.
Plant Cell Environ ; 42(2): 437-447, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30014483

RESUMEN

Plants closing stomata in the presence of harmful gases is believed to be a stress avoidance mechanism. SO2 , one of the major airborne pollutants, has long been reported to induce stomatal closure, yet the mechanism remains unknown. Little is known about the stomatal response to airborne pollutants besides O3 . SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) and OPEN STOMATA 1 (OST1) were identified as genes mediating O3 -induced closure. SLAC1 and OST1 are also known to mediate stomatal closure in response to CO2 , together with RESPIRATORY BURST OXIDASE HOMOLOGs (RBOHs). The overlaying roles of these genes in response to O3 and CO2 suggested that plants share their molecular regulators for airborne stimuli. Here, we investigated and compared stomatal closure event induced by a wide concentration range of SO2 in Arabidopsis through molecular genetic approaches. O3 - and CO2 -insensitive stomata mutants did not show significant differences from the wild type in stomatal sensitivity, guard cell viability, and chlorophyll content revealing that SO2 -induced closure is not regulated by the same molecular mechanisms as for O3 and CO2 . Nonapoptotic cell death is shown as the reason for SO2 -induced closure, which proposed the closure as a physicochemical process resulted from SO2 distress, instead of a biological protection mechanism.


Asunto(s)
Dióxido de Carbono/farmacología , Muerte Celular/efectos de los fármacos , Ozono/farmacología , Estomas de Plantas/efectos de los fármacos , Dióxido de Azufre/farmacología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Clorofila/metabolismo , Proteínas de la Membrana/fisiología , Estomas de Plantas/citología , Proteínas Quinasas/fisiología , Sulfitos/farmacología
5.
Nanotechnology ; 29(43): 435601, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30084385

RESUMEN

Anodic aluminium oxide (AAO) is a self-organised nanopore that has been widely studied due to the ease of its synthesization and pore properties manipulation. However, pore growth behaviour under different geometrical surfaces is rarely studied, particularly on the effect of combined curved surfaces towards pore growth properties, which is crucial in designing unique porous platform for specific applications. This paper reports study on the decisive effect of curvature surfaces on development of pore structure and properties at a constant potential. In this work, AAO grown on treated convex and concave surfaces were analysed in terms of pore quantity, pore diameter, interpore distance, pore length and other parameters of pore bottom geometry in conjugation with observation of pore cessation, bifurcation, bending and tapering. The unique formation of tapered pore was observed and described. Major factors deciding pore properties under curved surfaces were identified and discussed. We introduced a new parameter for surface quantification known as central inscribed angle, which was identified to be the central factor which decides pore growth behaviour under a curvature. Here, we observed a different trend in growth rate of pores under different curvatures, which oppose the commonly accepted convex > planar > concave pattern. Levelling height was later identified to be the decisive factor in determining growth rate of pores under a curvature at different geometrical location. These findings open up possibility to precisely control and tailor the growing path and pore structures of AAO simply via anodising an Al sheet under combined curvature surfaces, which could be beneficial for future novel applications.

6.
Sensors (Basel) ; 15(2): 2354-68, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25621608

RESUMEN

Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s) of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days), narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10(-3)-1.0 × 10(1) mg·L(-1), LOD: 2.0 × 10(-4) mg·L(-1); selenite: 1.0 × 10(-5)-1.0 × 10(2) mg·L(-1), LOD: 5.8 × 10(-6) mg·L(-1)), short response times (0-9 min), high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.


Asunto(s)
Arsenitos/aislamiento & purificación , Técnicas Biosensibles , Estrés Oxidativo , Ácido Selenioso/aislamiento & purificación , Carragenina/química , Escherichia coli/química , Ensayos Analíticos de Alto Rendimiento , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...