Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14621, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918525

RESUMEN

Gestational diabetes mellitus (GDM) is associated with increased postpartum risk for metabolic dysfunction-associated steatotic liver disease (MASLD). GDM-related MASLD predisposes to advanced liver disease, necessitating a better understanding of its development in GDM. This preclinical study evaluated the MASLD development in a lean GDM mouse model with impaired insulin secretion capacity. Lean GDM was induced by short-term 60% high-fat diet and low-dose streptozotocin injections (60 mg/kg for 3 days) before mating in C57BL/6N mice. The control dams received only high-fat diet or low-fat diet. Glucose homeostasis was assessed during pregnancy and postpartum, whereas MASLD was assessed on postpartum day 30 (PP30). GDM dams exhibited a transient hyperglycemic phenotype during pregnancy, with hyperglycaemia reappearing after lactation. Lower insulin levels and impaired glucose-induced insulin response were observed in GDM mice during pregnancy and postpartum. At PP30, GDM dams displayed higher hepatic triglyceride content compared controls, along with increased MAS (MASLD) activity scores, indicating lipid accumulation, inflammation, and cell turnover indices. Additionally, at PP30, GDM dams showed elevated plasma liver injury markers. Given the absence of obesity in this double-hit GDM model, the results clearly indicate that impaired insulin secretion driven pregnancy hyperglycaemia has a distinct contribution to the development of postpartum MASLD.


Asunto(s)
Diabetes Gestacional , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Periodo Posparto , Animales , Diabetes Gestacional/metabolismo , Embarazo , Femenino , Ratones , Periodo Posparto/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/etiología , Insulina/metabolismo , Insulina/sangre , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/patología , Glucemia/metabolismo , Triglicéridos/metabolismo , Triglicéridos/sangre
2.
Mol Metab ; 79: 101838, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995884

RESUMEN

OBJECTIVE: Carbohydrate Response Element Binding Protein (ChREBP) is a glucose 6-phosphate (G6P)-sensitive transcription factor that acts as a metabolic switch to maintain intracellular glucose and phosphate homeostasis. Hepatic ChREBP is well-known for its regulatory role in glycolysis, the pentose phosphate pathway, and de novo lipogenesis. The physiological role of ChREBP in hepatic glycogen metabolism and blood glucose regulation has not been assessed in detail, and ChREBP's contribution to carbohydrate flux adaptations in hepatic Glycogen Storage Disease type 1 (GSD I) requires further investigation. METHODS: The current study aimed to investigate the role of ChREBP as a regulator of glycogen metabolism in response to hepatic G6P accumulation, using a model for acute hepatic GSD type Ib. The immediate biochemical and regulatory responses to hepatic G6P accumulation were evaluated upon G6P transporter inhibition by the chlorogenic acid S4048 in mice that were either treated with a short hairpin RNA (shRNA) directed against ChREBP (shChREBP) or a scrambled shRNA (shSCR). Complementary stable isotope experiments were performed to quantify hepatic carbohydrate fluxes in vivo. RESULTS: ShChREBP treatment normalized the S4048-mediated induction of hepatic ChREBP target genes to levels observed in vehicle- and shSCR-treated controls. In parallel, hepatic shChREBP treatment in S4048-infused mice resulted in a more pronounced accumulation of hepatic glycogen and further reduction of blood glucose levels compared to shSCR treatment. Hepatic ChREBP knockdown modestly increased glucokinase (GCK) flux in S4048-treated mice while it enhanced UDP-glucose turnover as well as glycogen synthase and phosphorylase fluxes. Hepatic GCK mRNA and protein levels were induced by shChREBP treatment in both vehicle- and S4048-treated mice, while glycogen synthase 2 (GYS2) and glycogen phosphorylase (PYGL) mRNA and protein levels were reduced. Finally, knockdown of hepatic ChREBP expression reduced starch domain binding protein 1 (STBD1) mRNA and protein levels while it inhibited acid alpha-glucosidase (GAA) activity, suggesting reduced capacity for lysosomal glycogen breakdown. CONCLUSIONS: Our data show that ChREBP activation controls hepatic glycogen and blood glucose levels in acute hepatic GSD Ib through concomitant regulation of glucose phosphorylation, glycogenesis, and glycogenolysis. ChREBP-mediated control of GCK enzyme levels aligns with corresponding adaptations in GCK flux. In contrast, ChREBP activation in response to acute hepatic GSD Ib exerts opposite effects on GYS2/PYGL enzyme levels and their corresponding fluxes, indicating that GYS2/PYGL expression levels are not limiting to their respective fluxes under these conditions.


Asunto(s)
Glucemia , Enfermedad del Almacenamiento de Glucógeno Tipo I , Animales , Ratones , Metabolismo de los Hidratos de Carbono , Modelos Animales de Enfermedad , Glucosa/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno Hepático/metabolismo , Fosfatos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Int J Obes (Lond) ; 34(2): 374-84, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19844210

RESUMEN

BACKGROUND AND OBJECTIVES: The antiobesity effects of suppressed endocannabinoid signaling may rely, at least in part, on changes in lipid fluxes. As fatty acids exert specific effects depending on their level of saturation, we hypothesized that the dietary fatty acid composition would influence the outcome of treatment with a CB(1)-receptor antagonist (rimonabant). METHODS: Mice were treated with rimonabant (10 mg kg(-1) body weight per day) or vehicle while equicalorically fed either a low-fat diet (LF), a high-fat (HF) diet or an HF diet in which 10% of the saturated fatty acids (SFAs) were replaced by poly-unsaturated fatty acids (PUFA) from fish oil (FO). Food intake and body weight were registered daily. Indirect calorimetry was performed and feces were collected. After 3 weeks, mice were killed for blood and tissue collection. RESULTS: Relative to the LF diet, the HF diet caused anticipated metabolic derangements, which were partly reversed by the HF/FO diet. The HF/FO diet, however, was most obesity-promoting despite inhibiting lipogenesis as indicated by low gene expression levels of lipogenic enzymes. On all three diets, rimonabant treatment improved metabolic derangements and led to significantly lower body weight gain than their respective controls. This latter effect appeared largest in the HF/FO group, but occurred without major changes in nutrient absorption and energy expenditure. CONCLUSION: The effects of chronic rimonabant treatment on body weight gain occurred irrespective of diet-induced changes in lipogenic activity, food intake and daily energy expenditure, and were, in fact, most pronounced in HF/FO mice. The effects of dietary PUFA replacement in an HF diet on expansion of adipose tissue might allow the favorable effects of dietary PUFA on dyslipidemia and hepatic steatosis. In light of other disadvantageous effects of weight gain, this might be a risky trade-off.


Asunto(s)
Peso Corporal/efectos de los fármacos , Grasas de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Aceites de Pescado/metabolismo , Obesidad/metabolismo , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Animales , Cannabinoides/antagonistas & inhibidores , Grasas de la Dieta/farmacología , Metabolismo Energético/efectos de los fármacos , Aceites de Pescado/administración & dosificación , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/genética , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...