RESUMEN
MXenes are a family of two-dimensional (2D) materials with broad and varied applications in biology, materials science, photonics, and environmental remediation owing to their layered structure and high surface area-to-volume ratio. MXenes have exhibited significant nonlinear optical characteristics, which have been primarily explored in the context of photonics applications, yet the second-harmonic generation (SHG) behavior of MXenes remains an unexplored aspect of their optical properties. Herein, we demonstrate and quantify large second-order responses of 2D Ti3C2Tx MXenes both in aqueous solutions and on a silicon substrate for the first time. MXene flakes showed strong second-harmonic scattering (SHS) in a dilute suspension with a sensitivity of less than 0.1 µg/mL. Angle-dependent SHS experiments further found that the second-order responses originate from coherent 2D dipole radiation. Through confocal and atomic force microscopies, we found that the intense SHG signal from free-standing MXene flakes increases exponentially with decreasing thickness, while two-photon fluorescence increases linearly with thickness. The second-order susceptibility of the MXenes was determined to be 3.6 pm V-1 with a thickness of 10 nm, almost twice of that for an often-used SHG crystal, beta barium borate. We further explored surface properties of the MXene sheets by investigating the SHS responses upon addition of organic dye molecules to the system. It was found that the adsorption of crystal violet (CV) obeys a Langmuir adsorption model while the addition of malachite green (MG) resulted in almost no change in SHG intensity, even though the adsorption capacities for both CV (61.3 ± 1.7 mg/g) and MG (54.8 ± 2.8 mg/g) are similar. Such a stark difference in adsorption characteristics between cationic organic CV and MG dyes is likely due to their distinct orientational orderings on the MXene surfaces. This work opens many possibilities for the further employment of the family of 2D materials in photonics, optics, and surface catalysis applications.
RESUMEN
The accumulation of plastic waste in the environment is a growing environmental, economic, and societal challenge. Plastic upgrading, the conversion of low-value polymers to high-value materials, could address this challenge. Among upgrading strategies, the sulfonation of aromatic polymers is a powerful approach to access high-value materials for a range of applications, such as ion-exchange resins and membranes, electronic materials, and pharmaceuticals. While many sulfonation methods have been reported, achieving high degrees of sulfonation while minimizing side reactions that lead to defects in the polymer chains remains challenging. Additionally, sulfonating agents are most often used in large excess, which prevents precise control over the degree of sulfonation of aromatic polymers and their functionality. Herein, we address these challenges using 1,3-disulfonic acid imidazolium chloride ([Dsim]Cl), a sulfonic acid-based ionic liquid, to sulfonate aromatic polymers and upgrade plastic waste to electronic materials. We show that stoichiometric [Dsim]Cl can effectively sulfonate model polystyrene up to 92% in high yields, with minimal defects and high regioselectivity for the para position. Owing to its high reactivity, the use of substoichiometric [Dsim]Cl uniquely allows for precise control over the degree of sulfonation of polystyrene. This approach is also applicable to a wide range of aromatic polymers, including waste plastic. To prove the utility of our approach, samples of poly(styrene sulfonate) (PSS), obtained from either partially sulfonated polystyrene or expanded polystyrene waste, are used as scaffolds for poly(3,4-ethylenedioxythiophene) (PEDOT) to form the ubiquitous conductive material PEDOT:PSS. PEDOT:PSS from plastic waste is subsequently integrated into organic electrochemical transistors (OECTs) or as a hole transport layer (HTL) in a hybrid solar cell and shows the same performance as commercial PEDOT:PSS. This imidazolium-mediated approach to precisely sulfonating aromatic polymers provides a pathway toward upgrading postconsumer plastic waste to high-value electronic materials.
RESUMEN
The electrocatalytic oxygen evolution reaction (OER) is important for many renewable energy technologies. Developing cost-effective electrocatalysts with high performance remains a great challenge. Here, we successfully demonstrate our novel interface catalyst comprised of Ni3Fe1-based layered double hydroxides (Ni3Fe1-LDH) vertically immobilized on a two-dimensional MXene (Ti3C2Tx) surface. The Ni3Fe1-LDH/Ti3C2Tx yielded an anodic OER current of 100 mA cm-2 at 0.28 V versus reversible hydrogen electrode (RHE), nearly 74 times lower than that of the pristine Ni3Fe1-LDH. Furthermore, the Ni3Fe1-LDH/Ti3C2Tx catalyst requires an overpotential of only 0.31 V versus RHE to deliver an industrial-level current density as high as 1000 mA cm-2. Such excellent OER activity was attributed to the synergistic interface effect between Ni3Fe1-LDH and Ti3C2Tx. Density functional theory (DFT) results further reveal that the Ti3C2Tx support can efficiently accelerate the electron extraction from Ni3Fe1-LDH and tailor the electronic structure of catalytic sites, resulting in enhanced OER performance.
RESUMEN
The mechanism of thermal dry etching of cobalt films is discussed for a thermal process utilizing sequential exposures to chlorine gas and a diketone [either 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (hexafluoroacetylacetone, hfacH) or 2,4-pentanedione (acetylacetone, acacH)]. The process can be optimized experimentally to approach atomic layer etching (ALE); a sequential exposure to Cl2 and hfacH dry etchants at 140 °C is shown to proceed efficiently. The use of acacH as a diketone does not result in ALE with chlorine even at 180 °C, but the decrease of surface chlorine concentration and chemical reduction of cobalt is noted. However, thermal desorption analysis suggests that the reaction of chlorinated cobalt surface exposed to the ambient conditions (oxidized) with hfacH does produce volatile Co-containing products within the desired temperature range and the products contain Co3+. The effect of adsorption of ligands on the energy required to remove surface cobalt atoms is evaluated using the density functional theory.
RESUMEN
Modification of various properties of graphene oxide (GO) films on SiO2/Si substrate under KrF laser radiation was extensively studied. X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and the electrical resistance measurements were employed to correlate the effects of laser irradiation on structural, chemical and electrical properties of GO films under different laser fluences. Raman spectroscopy shows reduced graphene oxide patterns with increased I 2D/I G ratios in irradiated samples. X-ray photoelectron spectroscopy shows a high ratio of carbon to oxygen atoms in the reduced graphene oxide (rGO) films compared to the pristine GO films. X-ray diffraction patterns display a significant drop in the diffraction peak intensity after laser irradiation. Finally, the electrical resistance of irradiated GO films reduced by about four orders of magnitudes compared to the unirradiated GO films. Simultaneously, reduction and patterning of GO films display promising fabrication technique that can be useful for many graphene-based devices.
RESUMEN
The development of a cost-effective Si based platform on which III-V's can be grown is of great interest. This work investigates the morphology of gallium phosphide (GaP) films grown on {111} silicon (Si) substrates by means of liquid phase epitaxy in a tin (Sn) - based solvent bath. Two types of single-crystal {111} Si substrates were used; the first type was oriented exactly along the ⟨111⟩ surface (no-miscut) and the second was miscut by 4°. The growth rate of the GaP films was found to be markedly different for the two types of substrates; the GaP films on the miscut Si substrate grew â¼4 times faster than those on the no-miscut substrate. The GaP films grew epitaxially on both types of substrates, but contained Si and Sn as inclusions. In the case of the no-miscut substrate, a number of large Sn particles were incorporated at the GaP/Si interface. As a result, these interfacial Sn particles affected the strain state of the GaP films dramatically, which, in turn, manifested itself in the form of a duplex microstructure that consists of strained and strain-free regions.
RESUMEN
X-ray photoelectron spectroscopy is used to probe the photoinduced shifts in the binding energies of Si2p, O1s, and C1s of the SiO2/Si interfaces of a number of samples having oxide and/or thin organic layers on top of p- and n-Si wafers. Whereas the photoinduced shifts, in each and every peak related, vary from 0.2 to 0.5 eV for the p-type samples, the corresponding shifts are substantially smaller (<0.1 eV) for the n-type, regardless of (i) oxidation route (thermal or anodic), (ii) thickness of oxide layer, (iii) nature of organic layer, or (iv) color of three illuminating sources we have used. This leads us to conclude that these particular photoshifts reflect the charge state of the SiO2/Si interface, even in the case of a 20 nm thick oxide, where the interface is buried and cannot be probed directly by XPS.
RESUMEN
We describe scanning tunneling microscopy and X-ray photoelectron spectroscopy studies of graphene films produced by sonication-assisted dispersion. Defects in these samples are not randomly distributed, and the graphene films exhibit a "patchwork" structure where unperturbed graphene areas are adjacent to heavily functionalized ones. Adjacent graphene layers are likely in poor mechanical contact due to adventitious species trapped between the carbon sheets of the sample.
Asunto(s)
Grafito/química , Microscopía de Túnel de Rastreo , Nanotecnología/métodos , Espectroscopía de Fotoelectrones , Sonicación/métodosRESUMEN
The interaction of vapor-deposited Al atoms with self-assembled monolayers (SAMs) of HS-(CH(2))(16)-X (X = -OH and -OCH(3)) chemisorbed at polycrystalline Au[111] surfaces was studied using time-of-flight secondary-ion mass spectrometry, X-ray photoelectron spectroscopy, and infrared reflectance spectroscopy. Whereas quantum chemical theory calculations show that Al insertion into the C-C, C-H, C-O, and O-H bonds is favorable energetically, it is observed that deposited Al inserts only with the OH SAM to form an -O-Al-H product. This reaction appears to cease prior to complete -OH consumption, and is followed by formation of a few overlayers of a nonmetallic type of phase and finally deposition of a metallic film. In contrast, for the OCH(3) SAM, the deposited Al atoms partition along two parallel paths: nucleation and growth of an overlayer metal film, and penetration through the OCH(3) SAM to the monolayer/Au interface region. By considering a previous observation that a CH(3) terminal group favors penetration as the dominant initial process, and using theory calculations of Al-molecule interaction energies, we suggest that the competition between the penetration and overlayer film nucleation channels is regulated by small differences in the Al-SAM terminal group interaction energies. These results demonstrate the highly subtle effects of surface structure and composition on the nucleation and growth of metal films on organic surfaces and point to a new perspective on organometallic and metal-solvent interactions.