Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731274

RESUMEN

The Podolica cattle breed is widespread in southern Italy, and its productivity is characterized by low yields and an extraordinary quality of milk and meats. Most of the milk produced is transformed into "Caciocavallo Podolico" cheese, which is made with 100% Podolica milk. Fourier Transform Infrared Spectroscopy (FTIR) is the technique that, in this research work, was applied together with machine learning to discriminate 100% Podolica milk from contamination of other Calabrian cattle breeds. The analysis on the test set produced a misclassification percentage of 6.7%. Among the 15 non-Podolica samples in the test set, 2 were misclassified and recognized as Podolica milk even though the milk was from other species. The correct classification rate improved to 100% when the same method was applied to the recognition of Podolica and Pezzata Rossa milk produced by the same farm. Furthermore, this technique was tested for the recognition of Podolica milk mixed with milk from other bovine species. The multivariate model and the respective confusion matrices obtained showed that all the 14 Podolica samples (test set) mixed with 40% non-Podolica milk were correctly classified. In addition, Pezzata Rossa milk produced by the same farm was detected as a contaminant in Podolica milk from the same farm down to concentrations as little as 5% with a 100% correct classification rate in the test set. The method described yielded higher accuracy values when applied to the discrimination of milks from different breeds belonging to the same farm. One of the reasons for this phenomenon could be linked to the elimination of the environmental variable. However, the results obtained in this work demonstrate the possibility of using FTIR to discriminate between milks from different breeds.

2.
Plants (Basel) ; 13(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38498558

RESUMEN

Opuntia ficus-indica (L.) Miller is a plant belonging to the Cactaceae family adapted to live in environments characterized by long periods of drought and arid or desert climates. This plant is characterized by an aerial part composed of structures transformed by branches, called "cladodes", which are essential to reduce excessive perspiration of water and appear covered with thorns. The composition of the cladodes includes water, polysaccharides, fiber, proteins, vitamins, fatty acids, sterols, polyphenols, and minerals. The main purposes of this scientific work are (a) to compare the insoluble fiber (IF) extracted from the cladodes of O. ficus-indica belonging to the same plant but collected in different seasonal periods (winter and summer) and develop new extraction protocols that are able to improve the yield obtained and (b) evaluate the antioxidant potential of the fiber and study possible variations as a result of the extraction protocol chosen. The first objective was achieved (1) by measuring the amount of IF extracted from cladodes harvested in winter and summer (CW and CS, respectively) and (2) by modifying three variables involved in the fiber extraction protocol. To achieve the second objective, the following experiments were carried out: (1) measurement of the antioxidant potential of IF in CW and CS; (2) measurement of cellular reactive oxygen species; (3) measurement of the activity of some antioxidant enzymes; and (4) comparison of the polyphenol content in CW and CS. In conclusion, the results obtained showed that the IF extraction process can be improved, achieving a uniform yield regardless of seasonality; the antioxidant effect may vary depending on the extraction protocol.

3.
Front Cardiovasc Med ; 11: 1332339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322770

RESUMEN

Introduction: Cardiovascular diseases (CVDs) are the most important cause of premature death and disability worldwide. Environmental degradation and cardiovascular diseases are two keys to health challenges, characterized by a constant evolution in an industrialized world that exploits natural resources regardless of the consequences for health. The etiological risk factors of CVDs are widely known and include dyslipidemia, obesity, diabetes, and chronic cigarette consumption. However, one component that is often underestimated is exposure to heavy metals. The biological perspective explains that different metals play different roles. They are therefore classified into essential heavy metals, which are present in organisms where they perform important vital functions, especially in various physiological processes, or non-essential heavy metals, with a no biological role but, nonetheless, remain in the environment in which they are absorbed. Although both types of metal ions are many times chemically similar and can bind to the same biological ligands, the attention given today to nonessential metals in several eukaryotic species is starting to raise strong concerns due to an exponential increase in their concentrations. The aim of this systematic review was to assess possible correlations between exposure to nonessential heavy metals and increased incidence of cardiovascular disease, reporting the results of studies published in the last 5 years through March 2023. Methods: The studies includes reviews retrieved from PubMed, Medline, Embase, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and following the PICO (Population Intervention Comparison Outcome Population) framework. Results: Eight reviews, including a total of 153 studies, were identified. Seven of these review enlighted the association between CVDs and non-essential heavy metals chronic exposure. Discussion: It is evident that exposure to heavy metals represent a risk factor for CVDs onset. However, further studies are needed to better understand the effects caused by these metals.

4.
Front Cardiovasc Med ; 11: 1345218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370153

RESUMEN

Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.

5.
Ultraschall Med ; 45(1): 69-76, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36746396

RESUMEN

OBJECTIVES: This study aimed to evaluate elastography features of deep infiltrating endometriosis (DIE), and to define whether this technique may discriminate lesions from surrounding non-endometriotic tissue. METHODS: This was an exploratory observational study on women affected by DIE treated in a third-level academic hospital gynaecology outpatient facility between 2020 and 2021. Strain elastography (SE) was conducted via transvaginal probe. Tissue deformation of DIE and surrounding tissue was expressed as percentage tissue deformation or as subjective colour score (CS; from blue=stiff to red=soft, assigned numerical values from 0 to 3). Ratios of normal tissue/DIE were compared to ratio of normal tissue/stiffer normal tissue area. RESULTS: Evaluations were performed on 46 DIE nodules and surrounding tissue of the uterosacral ligaments (n=21), parametrium (n=7), rectum (n=14), and recto-vaginal septum (n =4). Irrespective of location, DIE strain ratio (3.09, IQR 2.38-4.14 vs. 1.25, IQR 1.11-1.48; p<0.001) and CS ratio (4.62, IQR 3.83-6.94 vs. 1.13, IQR 1.06-1.29; p<0.001) was significantly higher than that of normal tissue. ROC AUC of CS ratio was higher than ROC AUC of strain ratio (99.76%, CI.95 99.26-100% vs. 91.35%, CI.95 85.23-97.47%; p=0.007), and best ROC threshold for CS ratio was 1.82, with a sensitivity of 97.83% (CI.95 93.48-100%) and a specificity of 100% (CI.95 100-100%). CONCLUSIONS: Both strain and CS ratios accurately distinguish DIE nodules at various locations. Applications of elastography in improving the diagnosis DIE, in distinguishing different DIE lesions and in monitoring DIE evolution can be envisioned and are worthy of further evaluation.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Endometriosis , Femenino , Humanos , Endometriosis/diagnóstico por imagen , Endometriosis/patología , Sensibilidad y Especificidad , Estudios de Factibilidad , Recto/diagnóstico por imagen , Recto/patología , Ultrasonografía/métodos
6.
Free Radic Biol Med ; 210: 333-343, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056573

RESUMEN

Selenite as an inorganic form of selenium can affect the redox state of mitochondria by modifying the thiol groups of cysteines. The F1FO-ATPase has been identified as a mitochondrial target of this compound. Indeed, the bifunctional mechanism of ATP turnover of F1FO-ATPase was differently modified by selenite. The activity of ATP hydrolysis was stimulated, whereas the ADP phosphorylation was inhibited. We ascertain that a possible new protein adduct identified as seleno-dithiol (-S-Se-S-) mercaptoethanol-sensitive caused the activation of F-ATPase activity and the oxidation of free -SH groups in mitochondria. Conversely, the inhibition of ATP synthesis by selenite might be irreversible. The kinetic analysis of the activation mechanism was an uncompetitive mixed type with respect to the ATP substrate. Selenite bound more selectively to the F1FO-ATPase loaded with the substrate by preferentially forming a tertiary (enzyme-ATP-selenite) complex. Otherwise, the selenite was a competitive mixed-type activator with respect to the Mg2+ cofactor. Thus, selenite more specifically bound to the free enzyme forming the complex enzyme-selenite. However, even if the selenite impaired the catalysis of F1FO-ATPase, the mitochondrial permeability transition pore phenomenon was unaffected. Therefore, the reversible energy transduction mechanism of F1FO-ATPase can be oppositely regulated by selenite.


Asunto(s)
Adenosina Trifosfatasas , Compuestos de Sulfhidrilo , Adenosina Trifosfatasas/metabolismo , Fosforilación , Compuestos de Sulfhidrilo/metabolismo , Cinética , Hidrólisis , Mitocondrias/metabolismo , Oxidación-Reducción , Adenosina Trifosfato/metabolismo
7.
J Transl Med ; 21(1): 757, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884933

RESUMEN

Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Hepatocitos/patología , Inflamación/patología , Fibrosis , Mitocondrias/patología
8.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762081

RESUMEN

Cellular metabolism therapy counteracting metabolic dysfunction performs a preeminent role in the pathophysiology of different diseases, such as cancer, diabetes, metabolic syndrome, and cardiovascular and neurodegenerative diseases [...].


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Síndrome Metabólico , Humanos
9.
Microorganisms ; 11(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37764109

RESUMEN

Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora offers a treasure trove of plant species and their associated phytochemicals, which hold immense potential as a solution to address AMR. By investigating the antimicrobial properties of Italian flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for animal production.

10.
Foods ; 12(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569186

RESUMEN

The presence of chemical contaminants, toxins, or veterinary drugs in milk, as well as the adulteration of milk from different species, has driven the development of new tools to ensure safety and quality. Several analytical procedures have been proposed for the rapid screening of hazardous substances or the selective confirmation of the authenticity of milk. Mid-infrared spectroscopy and Fourier-transform infrared have been two of the most relevant technologies conventionally employed in the dairy industry. These fingerprint methodologies can be very powerful in determining the trait of raw material without knowing the identity of each constituent, and several aspects suggest their potential as a screening method to detect adulteration. This paper reviews the latest advances in applying mid-infrared spectroscopy for the detection and quantification of adulterants, milk dilution, the presence of pathogenic bacteria, veterinary drugs, and hazardous substances in milk.

11.
Nutrients ; 15(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571363

RESUMEN

Neurodegenerative diseases (NDs) affect millions of people worldwide, and to date, Alzheimer's and Parkinson's diseases are the most common NDs. Of the many risk factors for neurodegeneration, the aging process has the most significant impact, to the extent that it is tempting to consider neurodegenerative disease as a manifestation of accelerated aging. However, genetic and environmental factors determine the course of neurodegenerative disease progression. It has been proposed that environmental stimuli influence neuroplasticity. Some clinical studies have shown that healthy lifestyles and the administration of nutraceuticals containing bioactive molecules possessing antioxidant and anti-inflammatory properties have a preventive impact or mitigate symptoms in previously diagnosed patients. Despite ongoing research efforts, the therapies currently used for the treatment of NDs provide only marginal therapeutic benefits; therefore, the focus is now directly on the search for natural products that could be valuable tools in combating these diseases, including the natural compound Andrographis paniculata (Ap) and its main constituent, andrographolide (Andro). Preclinical studies have shown that the aqueous extract of Ap can modulate neuroinflammatory and neurodegenerative responses, reducing inflammatory markers and oxidative stress in various NDs. Therefore, in this review, we will focus on the molecular mechanisms by which Ap and Andro can modulate the processes of neurodegeneration and neuroinflammation, which are significant causes of neuronal death and cognitive decline.


Asunto(s)
Andrographis , Enfermedades Neurodegenerativas , Humanos , Andrographis paniculata , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
12.
Plants (Basel) ; 12(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37299105

RESUMEN

A balanced diet, rich in fruits and vegetables and ensuring the intake of natural products, has been shown to reduce or prevent the occurrence of many chronic diseases. However, the choice to consume large quantities of fruits and vegetables leads to an increase in the amount of waste, which can cause an alteration in environmental sustainability. To date, the concept of a "byproduct" has evolved, now being understood as a waste product from which it is still possible obtain useful compounds. Byproducts in the agricultural sector are a rich source of bioactive compounds, capable of possessing a second life, decreasing the amount of waste products, the disposal costs, and environmental pollution. A promising and well-known citrus of the Mediterranean diet is the bergamot (Citrus bergamia, Risso et Poiteau). The composition of bergamot is known, and the rich presence of phenolic compounds and essential oils has justified the countless beneficial properties found, including anti-inflammatory, antioxidant, anti-cholesterolemic, and protective activity for the immune system, heart failure, and coronary heart diseases. The industrial processing of bergamot fruits leads to the formation of bergamot juice and bergamot oil. The solid residues, referred to as "pastazzo", are normally used as feed for livestock or pectin production. The fiber of bergamot (BF) can be obtained from pastazzo and could exert an interesting effect thanks to its content of polyphenols. The aims of this work were twofold: (a) to have more information (composition, polyphenol and flavonoid content, antioxidant activity, etc.) on BF powder and (b) to verify the effects of BF on an in vitro model of neurotoxicity induced by treatment with amyloid beta protein (Aß). In particular, a study of cell lines was carried out on both neurons and oligodendrocytes, to measure the involvement of the glia and compare it with that of the neurons. The results obtained showed that BF powder contains polyphenols and flavonoids and that it is able to exercise an antioxidant property. Moreover, BF exerts a protective action on the damage induced by treatment with Aß, and this defense is found in experiments on the cell viability, on the accumulation of reactive oxygen species, on the involvement of the expression of caspase-3, and on necrotic or apoptotic death. In all these results, oligodendrocytes were always more sensitive and fragile than neurons. Further experiments are needed, and if this trend is confirmed, BF could be used in AD; at the same time, it could help to avoid the accumulation of waste products.

13.
Biomedicines ; 11(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371796

RESUMEN

Fibromyalgia (FM) is a serious chronic pain syndrome, characterised by muscle and joint stiffness, insomnia, fatigue, mood disorders, cognitive dysfunction, anxiety, depression and intestinal irritability. Irritable Bowel Syndrome (IBS) shares many of these symptoms, and FM and IBS frequently co-exist, which suggests a common aetiology for the two diseases. The exact physiopathological mechanisms underlying both FM and IBS onset are unknown. Researchers have investigated many possible causes, including alterations in gut microbiota, which contain billions of microorganisms in the human digestive tract. The gut-brain axis has been proven to be the link between the gut microbiota and the central nervous system, which can then control the gut microbiota composition. In this review, we will discuss the similarities between FM and IBS. Particularly, we will focus our attention on symptomatology overlap between FM and IBS as well as the similarities in microbiota composition between FM and IBS patients. We will also briefly discuss the potential therapeutic approaches based on microbiota manipulations that are successfully used in IBS and could be employed also in FM patients to relieve pain, ameliorate the rehabilitation outcome, psychological distress and intestinal symptoms.

14.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047080

RESUMEN

Human diseases are characterized by the perpetuation of an inflammatory condition in which the levels of Reactive Oxygen Species (ROS) are quite high. Excessive ROS production leads to DNA damage, protein carbonylation and lipid peroxidation, conditions that lead to a worsening of inflammatory disorders. In particular, compromised mitochondria sustain a stressful condition in the cell, such that mitochondrial dysfunctions become pathogenic, causing human disorders related to inflammatory reactions. Indeed, the triggered inflammation loses its beneficial properties and turns harmful if dysregulation and dysfunctions are not addressed. Thus, reducing oxidative stress with ROS scavenger compounds has proven to be a successful approach to reducing inflammation. Among these, natural compounds, in particular, polyphenols, alkaloids and coenzyme Q10, thanks to their antioxidant properties, are capable of inhibiting the activation of NF-κB and the expression of target genes, including those involved in inflammation. Even more, clinical trials, and in vivo and in vitro studies have demonstrated the antioxidant and anti-inflammatory effects of phytosomes, which are capable of increasing the bioavailability and effectiveness of natural compounds, and have long been considered an effective non-pharmacological therapy. Therefore, in this review, we wanted to highlight the relationship between inflammation, altered mitochondrial oxidative activity in pathological conditions, and the beneficial effects of phytosomes. To this end, a PubMed literature search was conducted with a focus on various in vitro and in vivo studies and clinical trials from 2014 to 2022.


Asunto(s)
Antioxidantes , Confianza , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Inflamación/metabolismo , Estrés Oxidativo
15.
Nutrients ; 15(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986064

RESUMEN

High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders.


Asunto(s)
Citrus , Hipertensión , Accidente Cerebrovascular , Ratas , Humanos , Animales , Ratas Endogámicas SHR , Células Endoteliales , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/efectos adversos , Solución Salina , Accidente Cerebrovascular/etiología , Presión Sanguínea
16.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835176

RESUMEN

Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.


Asunto(s)
Enfermedades Óseas Metabólicas , Atrofia Muscular , Osteoporosis , Nervio Ciático , Animales , Ratas , Peso Corporal , Enfermedades Óseas Metabólicas/patología , Constricción , Músculo Esquelético/patología , Atrofia Muscular/patología , Osteoporosis/patología , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Microtomografía por Rayos X
17.
Antioxidants (Basel) ; 11(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36552569

RESUMEN

The control of neuropathic pain is a leading challenge in modern medicine. Traditional medicine has, for a long time, used natural compounds such as nutraceuticals for this purpose, and extensive evidence has supported their role in controlling oxidative stress and persistent pain-related inflammation. Nutraceuticals are natural products belonging to the food sector whose consumption could be related to physiological benefits. Indeed, they are used to improve health, prevent chronic diseases, and delay the aging process. Here, we report a systematic review and meta-analysis to provide a more comprehensive report on the use of nutraceuticals in neuropathic pain, including evaluating confounding factors. A search of the literature has been conducted on principal databases (PubMed, MEDLINE, EMBASE, and Web of Science) following the PRISMA statement, and we retrieved 484 articles, 12 of which were selected for the meta-analysis. The results showed that administration of natural drugs in animals with neuropathic pain led to a significant reduction in thermal hyperalgesia, measured in both the injured paw (SMD: 1.79; 95% CI: 1.41 to 2.17; p < 0.0001) and in the two paws (SMD: −1.74; 95% CI: −3.36 to −0.11; p = 0.036), as well as a reduction in mechanical allodynia and hyperalgesia (SMD: 1.95, 95% CI: 1.08 to 2.82; p < 0.001) when compared to controls. The results of the review indicate that nutraceutical compounds could be clinically relevant for managing persistent neuropathic pain.

18.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555095

RESUMEN

Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.


Asunto(s)
Enfermedades Cardiovasculares , Óxido Nítrico , Humanos , Nitratos/uso terapéutico , Nitratos/farmacología , Aldehído Deshidrogenasa , Enfermedades Cardiovasculares/tratamiento farmacológico , Nitroglicerina/uso terapéutico , Nitroglicerina/farmacología , Aldehído Deshidrogenasa Mitocondrial , Vasodilatadores/farmacología
19.
Pharmacol Res ; 186: 106547, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336218

RESUMEN

Widespread musculoskeletal pain characterizes fibromyalgia (FM), accompanied by sleep, fatigue, and mood problems. Chronic stress and depression play a crucial role in the etiology and pathophysiology of FM. They may contribute to a dysregulation of the central pain mechanisms together with the neuroendocrine and immune systems. Pharmacological treatments are the first-line therapy to reduce the symptoms of FM. The US Food and Drug Administration (FDA) indicated gabapentinoid, pregabalin, duloxetine, and milnacipran for adult patients. An alternative approach is widely used, based on therapies including interventions in patient education, behavioral therapy, exercise, pain management, and a healthy diet. A systematic search was performed on PubMed, MEDLINE, EMBASE, and Web of Science databases. The authors established the selection, inclusion, and exclusion criteria. We found a total of 908 articles. This systematic review will include ten articles selected after excluding duplicates and reading the abstracts and full texts. All studies related the effect of drugs to various symptoms caused by fibromyalgia patients with depression, such as insomnia/sleepiness, depression, suicide, difficulty walking/working, pain, fatigue, and nervousness. Although, we concluded that antidepressant drugs are effective in treating depression and pain in fibromyalgia, further studies are needed to understand the etiology of this disease and to find a combination of therapies to increase tolerability and adherence of the patient to the drug, decreasing the adverse effects.


Asunto(s)
Fibromialgia , Dolor Musculoesquelético , Adulto , Humanos , Fibromialgia/tratamiento farmacológico , Antidepresivos/efectos adversos , Fatiga/tratamiento farmacológico , Dolor Musculoesquelético/tratamiento farmacológico , Empleo
20.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012238

RESUMEN

The beneficial effects of bergamot polyphenolic fraction (BPF) on the mitochondrial bioenergetics of porcine aortic endothelial cells (pAECs) were verified under the cardiotoxic action of doxorubicin (DOX). The cell viability of pAECs treated for 24 h with different concentrations of DOX was reduced by 50%, but the negative effect of DOX was reversed in the presence of increasing doses of BPF (100 µg/mL and 200 µg/mL BPF). An analysis of the protective effect of BPF on the toxic action of DOX was also carried out on cell respiration. We observed the inhibition of the mitochondrial activity at 10 µM DOX, which was not restored by 200 µg/mL BPF. Conversely, the decrease in basal respiration and ATP production caused by 0.5 or 1.0 µM DOX were improved in the presence of 100 or 200 µg/mL BPF, respectively. After 24 h of cell recovery with 100 µg/mL or 200 µg/mL BPF on pAECs treated with 0.5 µM or 1.0 µM DOX, respectively, the mitochondrial parameters of oxidative metabolism impaired by DOX were re-boosted.


Asunto(s)
Doxorrubicina , Células Endoteliales , Animales , Antibióticos Antineoplásicos/farmacología , Supervivencia Celular , Doxorrubicina/toxicidad , Corazón , Mitocondrias , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA