Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38767115

RESUMEN

OBJECTIVE: We sought to determine whether the type 1 diabetes genetic risk score-2 (T1D-GRS2) and single nucleotide polymorphisms (SNPs) are associated with C-peptide preservation before type 1 diabetes diagnosis. METHODS: We conducted a retrospective analysis of 713 autoantibody-positive participants who developed type 1 diabetes in the TrialNet Pathway to Prevention Study who had T1DExomeChip data. We evaluated the relationships of 16 known SNPs and T1D-GRS2 with area under the curve (AUC) C-peptide levels during oral glucose tolerance tests conducted in the 9 months before diagnosis. RESULTS: Higher T1D-GRS2 was associated with lower C-peptide AUC in the 9 months before diagnosis in univariate (ß=-0.06, P<0.0001) and multivariate (ß=-0.03, P=0.005) analyses. Participants with the JAZF1 rs864745 T allele had lower C-peptide AUC in both univariate (ß=-0.11, P=0.002) and multivariate (ß=-0.06, P=0.018) analyses. CONCLUSIONS: The type 2 diabetes-associated JAZF1 rs864745 T allele and higher T1D-GRS2 are associated with lower C-peptide AUC prior to diagnosis of type 1 diabetes, with implications for the design of prevention trials.

3.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38634869

RESUMEN

We previously reported two siblings with inherited PD-1 deficiency who died from autoimmune pneumonitis at 3 and 11 years of age after developing other autoimmune manifestations, including type 1 diabetes (T1D). We report here two siblings, aged 10 and 11 years, with neonatal-onset T1D (diagnosed at the ages of 1 day and 7 wk), who are homozygous for a splice-site variant of CD274 (encoding PD-L1). This variant results in the exclusive expression of an alternative, loss-of-function PD-L1 protein isoform in overexpression experiments and in the patients' primary leukocytes. Surprisingly, cytometric immunophenotyping and single-cell RNA sequencing analysis on blood leukocytes showed largely normal development and transcriptional profiles across lymphoid and myeloid subsets in the PD-L1-deficient siblings, contrasting with the extensive dysregulation of both lymphoid and myeloid leukocyte compartments in PD-1 deficiency. Our findings suggest that PD-1 and PD-L1 are essential for preventing early-onset T1D but that, unlike PD-1 deficiency, PD-L1 deficiency does not lead to fatal autoimmunity with extensive leukocytic dysregulation.


Asunto(s)
Antígeno B7-H1 , Diabetes Mellitus Tipo 1 , Niño , Preescolar , Humanos , Recién Nacido , Autoinmunidad , Antígeno B7-H1/deficiencia , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Homocigoto , Receptor de Muerte Celular Programada 1/deficiencia , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología
4.
Commun Med (Lond) ; 4(1): 66, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582818

RESUMEN

BACKGROUND: Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies. METHODS: We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment. RESULTS: Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation. CONCLUSIONS: Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.


Islet autoantibodies are markers found in the blood when insulin-producing cells in the pancreas become damaged and can be used to predict future development of type 1 diabetes. We evaluated published literature to determine whether characteristics of islet antibodies (type, levels, numbers) could improve prediction and help understand differences in how individuals with type 1 diabetes respond to treatments. We found existing evidence shows that islet autoantibody type and number are most useful to predict disease progression before diagnosis. In addition, the age when islet autoantibodies first appear strongly influences rate of progression. These findings provide important information for patients and care providers on how islet autoantibodies can be used to understand future type 1 diabetes development and to identify individuals who have the potential to benefit from intervention or prevention therapy.

5.
Diabetes Care ; 47(6): 1032-1041, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608262

RESUMEN

OBJECTIVE: To characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODS: Characteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011-2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTS: T1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and their characteristics resembled those of individuals with T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low-risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low GRS 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONS: Characteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble those of people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates.


Asunto(s)
Diabetes Mellitus Tipo 1 , Veteranos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/epidemiología , Masculino , Persona de Mediana Edad , Veteranos/estadística & datos numéricos , Femenino , Adulto , Anciano , Predisposición Genética a la Enfermedad , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo
6.
Nat Commun ; 15(1): 1415, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418465

RESUMEN

Optic neuritis (ON) is associated with numerous immune-mediated inflammatory diseases, but 50% patients are ultimately diagnosed with multiple sclerosis (MS). Differentiating MS-ON from non-MS-ON acutely is challenging but important; non-MS ON often requires urgent immunosuppression to preserve vision. Using data from the United Kingdom Biobank we showed that combining an MS-genetic risk score (GRS) with demographic risk factors (age, sex) significantly improved MS prediction in undifferentiated ON; one standard deviation of MS-GRS increased the Hazard of MS 1.3-fold (95% confidence interval 1.07-1.55, P < 0.01). Participants stratified into quartiles of predicted risk developed incident MS at rates varying from 4% (95%CI 0.5-7%, lowest risk quartile) to 41% (95%CI 33-49%, highest risk quartile). The model replicated across two cohorts (Geisinger, USA, and FinnGen, Finland). This study indicates that a combined model might enhance individual MS risk stratification, paving the way for precision-based ON treatment and earlier MS disease-modifying therapy.


Asunto(s)
Esclerosis Múltiple , Neuritis Óptica , Humanos , Puntuación de Riesgo Genético , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/genética , Esclerosis Múltiple/complicaciones , Neuritis Óptica/diagnóstico , Neuritis Óptica/genética , Neuritis Óptica/complicaciones , Factores de Riesgo , Finlandia
7.
Int J Epidemiol ; 53(1)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205890

RESUMEN

BACKGROUND: Diabetes (regardless of type) and obesity are associated with a range of musculoskeletal disorders. The causal mechanisms driving these associations are unknown for many upper limb pathologies. We used genetic techniques to test the causal link between glycemia, obesity and musculoskeletal conditions. METHODS: In the UK Biobank's unrelated European cohort (N = 379 708) we performed mendelian randomisation (MR) analyses to test for a causal effect of long-term high glycaemia and adiposity on four musculoskeletal pathologies: frozen shoulder, Dupuytren's disease, carpal tunnel syndrome and trigger finger. We also performed single-gene MR using rare variants in the GCK gene. RESULTS: Using MR, we found evidence that long-term high glycaemia has a causal role in the aetiology of upper limb conditions. A 10-mmol/mol increase in genetically predicted haemoglobin A1C (HbA1c) was associated with frozen shoulder: odds ratio (OR) = 1.50 [95% confidence interval (CI), 1.20-1.88], Dupuytren's disease: OR = 1.17 (95% CI, 1.01-1.35), trigger finger: OR = 1.30 (95% CI, 1.09-1.55) and carpal tunnel syndrome: OR = 1.20 (95% CI, 1.09-1.33). Carriers of GCK mutations have increased odds of frozen shoulder: OR = 7.16 (95% CI, 2.93-17.51) and carpal tunnel syndrome: OR = 2.86 (95% CI, 1.50-5.44) but not Dupuytren's disease or trigger finger. We found evidence that an increase in genetically predicted body mass index (BMI) of 5 kg/m2 was associated with carpal tunnel syndrome: OR = 1.13 (95% CI, 1.10-1.16) and associated negatively with Dupuytren's disease: OR = 0.94 (95% CI, 0.90-0.98), but no evidence of association with frozen shoulder or trigger finger. Trigger finger (OR 1.96 (95% CI, 1.42-2.69) P = 3.6e-05) and carpal tunnel syndrome [OR 1.63 (95% CI, 1.36-1.95) P = 8.5e-08] are associated with genetically predicted unfavourable adiposity increase of one standard deviation of body fat. CONCLUSIONS: Our study consistently demonstrates a causal role of long-term high glycaemia in the aetiology of upper limb musculoskeletal conditions. Clinicians treating diabetes patients should be aware of these complications in clinic, specifically those managing the care of GCK mutation carriers. Upper limb musculoskeletal conditions should be considered diabetes complications.


Asunto(s)
Bursitis , Síndrome del Túnel Carpiano , Diabetes Mellitus , Contractura de Dupuytren , Hiperglucemia , Enfermedades Musculoesqueléticas , Trastorno del Dedo en Gatillo , Humanos , Contractura de Dupuytren/epidemiología , Contractura de Dupuytren/genética , Contractura de Dupuytren/complicaciones , Síndrome del Túnel Carpiano/epidemiología , Síndrome del Túnel Carpiano/genética , Síndrome del Túnel Carpiano/complicaciones , Trastorno del Dedo en Gatillo/complicaciones , Hiperglucemia/complicaciones , Hiperglucemia/epidemiología , Hiperglucemia/genética , Extremidad Superior , Enfermedades Musculoesqueléticas/complicaciones , Factores de Riesgo , Bursitis/complicaciones , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/genética
8.
Diabetes Care ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252849

RESUMEN

OBJECTIVE: With high prevalence of obesity and overlapping features between diabetes subtypes, accurately classifying youth-onset diabetes can be challenging. We aimed to develop prediction models that, using characteristics available at diabetes diagnosis, can identify youth who will retain endogenous insulin secretion at levels consistent with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We studied 2,966 youth with diabetes in the prospective SEARCH for Diabetes in Youth study (diagnosis age ≤19 years) to develop prediction models to identify participants with fasting C-peptide ≥250 pmol/L (≥0.75 ng/mL) after >3 years' (median 74 months) diabetes duration. Models included clinical measures at the baseline visit, at a mean diabetes duration of 11 months (age, BMI, sex, waist circumference, HDL cholesterol), with and without islet autoantibodies (GADA, IA-2A) and a Type 1 Diabetes Genetic Risk Score (T1DGRS). RESULTS: Models using routine clinical measures with or without autoantibodies and T1DGRS were highly accurate in identifying participants with C-peptide ≥0.75 ng/mL (17% of participants; 2.3% and 53% of those with and without positive autoantibodies) (area under the receiver operating characteristic curve [AUCROC] 0.95-0.98). In internal validation, optimism was very low, with excellent calibration (slope 0.995-0.999). Models retained high performance for predicting retained C-peptide in older youth with obesity (AUCROC 0.88-0.96) and in subgroups defined by self-reported race/ethnicity (AUCROC 0.88-0.97), autoantibody status (AUCROC 0.87-0.96), and clinically diagnosed diabetes types (AUCROC 0.81-0.92). CONCLUSIONS: Prediction models combining routine clinical measures at diabetes diagnosis, with or without islet autoantibodies or T1DGRS, can accurately identify youth with diabetes who maintain endogenous insulin secretion in the range associated with T2D.

9.
medRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37986756

RESUMEN

Over 10% of type 1 diabetes (T1D) cases do not have high-risk HLA-DR3 or DR4 haplotypes with distinct clinical features such as later onset and reduced insulin dependence. To identify genetic drivers of T1D in the absence of DR3/DR4, we performed association and fine-mapping analyses in 12,316 non-DR3/DR4 samples. Risk variants at the MHC and other loci genome-wide had heterogeneity in effects on T1D dependent on DR3/DR4, and non-DR3/DR4 T1D had evidence for a greater polygenic burden. T1D-assocated variants in non-DR3/DR4 were more enriched for loci, regulatory elements, and pathways for antigen presentation, innate immunity, and beta cells, and depleted in T cells, compared to DR3/DR4. Non-DR3/DR4 T1D cases were poorly classified based on an existing genetic risk score GRS2, and we created a new GRS which highly discriminated non-DR3/DR4 T1D from both non-diabetes and T2D. In total we identified heterogeneity in T1D genetic risk and disease mechanisms dependent on high-risk HLA haplotype and which enabled accurate classification of T1D across HLA background.

10.
medRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808789

RESUMEN

Objective: With the high prevalence of pediatric obesity and overlapping features between diabetes subtypes, accurately classifying youth-onset diabetes can be challenging. We aimed to develop prediction models that, using characteristics available at diabetes diagnosis, can identify youth who will retain endogenous insulin secretion at levels consistent with type 2 diabetes (T2D). Methods: We studied 2,966 youth with diabetes in the prospective SEARCH study (diagnosis age ≤19 years) to develop prediction models to identify participants with fasting c-peptide ≥250 pmol/L (≥0.75ng/ml) after >3 years (median 74 months) of diabetes duration. Models included clinical measures at baseline visit, at a mean diabetes duration of 11 months (age, BMI, sex, waist circumference, HDL-C), with and without islet autoantibodies (GADA, IA-2A) and a Type 1 Diabetes Genetic Risk Score (T1DGRS). Results: Models using routine clinical measures with or without autoantibodies and T1DGRS were highly accurate in identifying participants with c-peptide ≥0.75 ng/ml (17% of participants; 2.3% and 53% of those with and without positive autoantibodies) (area under receiver operator curve [AUCROC] 0.95-0.98). In internal validation, optimism was very low, with excellent calibration (slope=0.995-0.999). Models retained high performance for predicting retained c-peptide in older youth with obesity (AUCROC 0.88-0.96), and in subgroups defined by self-reported race/ethnicity (AUCROC 0.88-0.97), autoantibody status (AUCROC 0.87-0.96), and clinically diagnosed diabetes types (AUCROC 0.81-0.92). Conclusion: Prediction models combining routine clinical measures at diabetes diagnosis, with or without islet autoantibodies or T1DGRS, can accurately identify youth with diabetes who maintain endogenous insulin secretion in the range associated with type 2 diabetes.

11.
medRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873281

RESUMEN

Background: Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal clinically meaningful clusters in the at-risk population and allow for non-linear relationships between predictors are lacking. We aimed to identify and characterize clusters of islet autoantibody-positive individuals that share similar characteristics and type 1 diabetes risk. Methods: We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention (PTP) study data (n=1127). The outcome of the analysis was time to type 1 diabetes and variables in the model included demographics, genetics, metabolic factors and islet autoantibodies. An independent dataset (Diabetes Prevention Trial of Type 1 Diabetes, DPT-1 study) (n=704) was used for validation. Findings: The analysis revealed 8 clusters with varying type 1 diabetes risks, categorized into three groups. Group A had three clusters with high glucose levels and high risk. Group B included four clusters with elevated autoantibody titers. Group C had three lower-risk clusters with lower autoantibody titers and glucose levels. Within the groups, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels, age, and genetic risk. A decision rule for assigning individuals to clusters was developed. The validation dataset confirms that the clusters can identify individuals with similar characteristics. Interpretation: Demographic, metabolic, immunological, and genetic markers can be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.

12.
Commun Med (Lond) ; 3(1): 130, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37794169

RESUMEN

BACKGROUND: Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS: To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS: We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS: While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.


Type 1 diabetes (T1D) is a condition that results from the destruction of a type of cell in the pancreas that produces the hormone insulin, leading to lifelong dependence on insulin injections. T1D prevention remains a challenging goal, largely due to the immense variability in disease processes and progression. Therapies tested to date in medical research settings (clinical trials) work only in a subset of individuals, highlighting the need for more tailored prevention approaches. We reviewed clinical trials of therapies targeting the disease process in T1D. While the overall quality of trials was high, studies testing individual features affecting responses to treatments were low. This review reveals an important need to carefully plan high-quality analyses of features that affect treatment response in T1D, to ensure that tailored approaches may one day be applied to clinical practice.

13.
Lancet Diabetes Endocrinol ; 11(10): 755-767, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37666263

RESUMEN

Type 1 diabetes is around twice as common in the offspring of men with type 1 diabetes than in the offspring of women with type 1 diabetes, but the reasons for this difference are unclear. This Review summarises the evidence on the rate of transmission of type 1 diabetes to the offspring of affected fathers compared with affected mothers. The findings of nine major studies are presented, describing the magnitude of the effect observed and the relative strengths and weaknesses of these studies. This Review also explores possible underlying mechanisms for this effect, such as genetic mechanisms (eg, the selective loss of fetuses with high-risk genes in mothers with type 1 diabetes, preferential transmission of susceptibility genes from fathers, and parent-of-origin effects influencing gene expression), environmental exposures (eg, exposure to maternal hyperglycaemia, exogenous insulin exposure, and transplacental antibody transfer), and maternal microchimerism. Understanding why type 1 diabetes is more common in the offspring of men versus women with type 1 diabetes will help in the identification of individuals at high risk of the disease and can pave the way in the development of interventions that mimic the protective elements of maternal type 1 diabetes to reduce the risk of disease in individuals at high risk.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Gestacional , Masculino , Embarazo , Humanos , Femenino , Diabetes Mellitus Tipo 1/genética , Madres
15.
Diabetes Care ; 46(10): 1778-1782, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506364

RESUMEN

OBJECTIVE: To determine whether genetic risk for type 1 diabetes (T1D) differentiates the four Aß subgroups of ketosis-prone diabetes (KPD), where A+ and A- define the presence or absence of islet autoantibodies and ß+ and ß- define the presence or absence of ß-cell function. RESEARCH DESIGN AND METHODS: We compared T1D genetic risk scores (GRS) of patients with KPD across subgroups, race/ethnicity, ß-cell function, and glycemia. RESULTS: Among 426 patients with KPD (54% Hispanic, 31% African American, 11% White), rank order of GRS was A+ß- > A+ß+ = A-ß- > A-ß+. GRS of A+ß- KPD was lower than that of a T1D cohort, and GRS of A-ß+ KPD was higher than that of a type 2 diabetes cohort. GRS was lowest among African American patients, with a similar distribution across KPD subgroups. CONCLUSIONS: T1D genetic risk delineates etiologic differences among KPD subgroups. Patients with A+ß- KPD have the highest and those with A-ß+ KPD the lowest GRS.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cetoacidosis Diabética , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Factores de Riesgo , Células Secretoras de Insulina/fisiología
16.
Diabetologia ; 66(9): 1589-1600, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37439792

RESUMEN

Iterative advances in understanding of the genetics of type 1 diabetes have identified >70 genetic regions associated with risk of the disease, including strong associations across the HLA class II region that account for >50% of heritability. The increased availability of genetic data combined with the decreased costs of generating these data, have facilitated the development of polygenic scores that aggregate risk variants from associated loci into a single number: either a genetic risk score (GRS) or a polygenic risk score (PRS). PRSs incorporate the risk of many possibly correlated variants from across the genome, even if they do not reach genome-wide significance, whereas GRSs estimate the cumulative contribution of a smaller subset of genetic variants that reach genome-wide significance. Type 1 diabetes GRSs have utility in diabetes classification, aiding discrimination between type 1 diabetes, type 2 diabetes and MODY. Type 1 diabetes GRSs are also being used in newborn screening studies to identify infants at risk of future presentation of the disease. Most early studies of type 1 diabetes genetics have been conducted in European ancestry populations, but, to develop accurate GRSs across diverse ancestries, large case-control cohorts from non-European populations are still needed. The current barriers to GRS implementation within healthcare are mainly related to a lack of guidance and knowledge on integration with other biomarkers and clinical variables. Once these limitations are addressed, there is huge potential for 'test and treat' approaches to be used to tailor care for individuals with type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Recién Nacido , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Predisposición Genética a la Enfermedad/genética , Factores de Riesgo , Biomarcadores , Estudio de Asociación del Genoma Completo
17.
medRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131690

RESUMEN

Background: Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Efforts to prevent T1D have focused on modulating immune responses and supporting beta cell health; however, heterogeneity in disease progression and responses to therapies have made these efforts difficult to translate to clinical practice, highlighting the need for precision medicine approaches to T1D prevention. Methods: To understand the current state of knowledge regarding precision approaches to T1D prevention, we performed a systematic review of randomized-controlled trials from the past 25 years testing disease-modifying therapies in T1D and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. Results: We identified 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss in individuals at disease onset. Seventeen agents tested, mostly immunotherapies, showed benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employed precision analyses to assess features linked to treatment response. Age, measures of beta cell function and immune phenotypes were most frequently tested. However, analyses were typically not prespecified, with inconsistent methods reporting, and tended to report positive findings. Conclusions: While the quality of prevention and intervention trials was overall high, low quality of precision analyses made it difficult to draw meaningful conclusions that inform clinical practice. Thus, prespecified precision analyses should be incorporated into the design of future studies and reported in full to facilitate precision medicine approaches to T1D prevention. Plain Language Summary: Type 1 diabetes (T1D) results from the destruction of insulin-producing cells in the pancreas, necessitating lifelong insulin dependence. T1D prevention remains an elusive goal, largely due to immense variability in disease progression. Agents tested to date in clinical trials work in a subset of individuals, highlighting the need for precision medicine approaches to prevention. We systematically reviewed clinical trials of disease-modifying therapy in T1D. While age, measures of beta cell function, and immune phenotypes were most commonly identified as factors that influenced treatment response, the overall quality of these studies was low. This review reveals an important need to proactively design clinical trials with well-defined analyses to ensure that results can be interpreted and applied to clinical practice.

18.
Diabetes Care ; 46(6): 1156-1163, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802355

RESUMEN

OBJECTIVE: To determine whether presentation, progression, and genetic susceptibility of robustly defined adult-onset type 1 diabetes (T1D) are altered by diagnosis age. RESEARCH DESIGN AND METHODS: We compared the relationship between diagnosis age and presentation, C-peptide loss (annual change in urine C-peptide-creatinine ratio [UCPCR]), and genetic susceptibility (T1D genetic risk score [GRS]) in adults with confirmed T1D in the prospective StartRight study, 1,798 adults with new-onset diabetes. T1D was defined in two ways: two or more positive islet autoantibodies (of GAD antibody, IA-2 antigen, and ZnT8 autoantibody) irrespective of clinical diagnosis (n = 385) or one positive islet autoantibody and a clinical diagnosis of T1D (n = 180). RESULTS: In continuous analysis, age of diagnosis was not associated with C-peptide loss for either definition of T1D (P > 0.1), with mean (95% CI) annual C-peptide loss in those diagnosed before and after 35 years of age (median age of T1D defined by two or more positive autoantibodies): 39% (31-46) vs. 44% (38-50) with two or more positive islet autoantibodies and 43% (33-51) vs. 39% (31-46) with clinician diagnosis confirmed by one positive islet autoantibody (P > 0.1). Baseline C-peptide and T1D GRS were unaffected by age of diagnosis or T1D definition (P > 0.1). In T1D defined by two or more autoantibodies, presentation severity was similar in those diagnosed before and after 35 years of age: unintentional weight loss, 80% (95% CI 74-85) vs. 82% (76-87); ketoacidosis, 24% (18-30) vs. 19% (14-25); and presentation glucose, 21 mmol/L (19-22) vs. 21 mmol/L (20-22) (all P ≥ 0.1). Despite similar presentation, older adults were less likely to be diagnosed with T1D, insulin-treated, or admitted to hospital. CONCLUSIONS: When adult-onset T1D is robustly defined, the presentation characteristics, progression, and T1D genetic susceptibility are not altered by age of diagnosis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Anciano , Diabetes Mellitus Tipo 1/complicaciones , Predisposición Genética a la Enfermedad , Péptido C , Estudios Prospectivos , Diabetes Mellitus Tipo 2/complicaciones , Autoanticuerpos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA