Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(31): eabm7658, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921409

RESUMEN

Metallic Mimosa pudica, a three-dimensional (3D) biomimetic structure made of metallic glass, is formed via laser patterning: Blooming, closing, and reversing of the metallic M. pudica can be controlled by an applied magnetic field or by manual reshaping. An array of laser-crystallized lines is written in a metallic glass ribbon. Changes in density and/or elastic modulus due to laser patterning result in an appropriate size mismatch between the shrunken crystalline regions and the glassy matrix. The residual stress and elastic distortion energy make the composite material to buckle within the elastic limit and to obey the minimum elastic energy criterion. This work not only provides a programming route for constructing buckling structures of metallic glasses but also provides clues for the study of materials with automatic functions desired in robotics, electronic devices, and, especially, medical devices in the field of medicine, such as vessel scaffolds and vascular filters, which require contactless expansion and contraction functions.

2.
Nat Commun ; 12(1): 2839, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990573

RESUMEN

A combination of complementary high-energy X-ray diffraction, containerless solidification during electromagnetic levitation and transmission electron microscopy is used to map in situ the phase evolution in a prototype Cu-Zr-Al glass during flash-annealing imposed at a rate ranging from 102 to 103 K s-1 and during cooling from the liquid state. Such a combination of experimental techniques provides hitherto inaccessible insight into the phase-transformation mechanism and its kinetics with high temporal resolution over the entire temperature range of the existence of the supercooled liquid. On flash-annealing, most of the formed phases represent transient (metastable) states - they crystallographically conform to their equilibrium phases but the compositions, revealed by atom probe tomography, are different. It is only the B2 CuZr phase which is represented by its equilibrium composition, and its growth is facilitated by a kinetic mechanism of Al partitioning; Al-rich precipitates of less than 10 nm in a diameter are revealed. In this work, the kinetic and chemical conditions of the high propensity of the glass for the B2 phase formation are formulated, and the multi-technique approach can be applied to map phase transformations in other metallic-glass-forming systems.

3.
Rev Sci Instrum ; 91(7): 073901, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752795

RESUMEN

Details of fast-resistive-heating setups, controlled heating ranging from ∼101 K s-1 to ∼103 K s-1, to study in situ phase transformations (on heating and on cooling) in metallic glasses by high-energy synchrotron x-ray diffraction are discussed. Both setups were designed and custom built at the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) and have been implemented at the P02.1 Powder Diffraction and Total Scattering Beamline and the P21.1 Swedish Materials Science Beamline at PETRA III storage ring, DESY, Hamburg. The devices are interchangeable at both beamlines. Joule heating is triggered automatically and is timed with the incident beam and detector. The crystallization process can be controlled via a feedback circuit by monitoring the change in the time-dependent resistivity and temperature of glasses. Different ambient atmospheres, such as vacuum and inert gases (He and Ar), can be used to control oxidation and cooling. The main focus of these devices is on understanding the crystallization mechanism and kinetics in metallic glasses, which are brittle and for which fast heating gives defined glass-crystal composites with enhanced plasticity. As an example, phase-transformation sequence(s) in a prototyped Cu-Zr-based metallic glass is described on heating, and a crystalline phase beneficial to the plasticity is identified.

4.
ACS Nano ; 12(11): 11130-11138, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30265797

RESUMEN

Advanced fabrication methods must be developed for magnetic-polymeric particles, which are used in medical diagnostics, drug delivery, separation, and environmental remediation. The development of scalable fabrication processes that enables simultaneously tuning of diameters and compositions of magnetic-polymeric particles remains a major challenge. Here, we proposed the production of high-quality magnetic-composite particles through a universal method based on the in-fiber Plateau-Rayleigh instability of polymeric fibers. This method can simultaneously control the particle diameter, hybrid configuration, and functional properties. The diameter of magnetic-polymeric particles can be reproducibly tuned from ∼20 nm to 1.25 mm, a wide range unachievable by conventional solution methods. The final diameter was controlled by the inner/outer fiber diameter ratio. We further showed that the prepared magnetic-polymeric composite particles can be used for the highly efficient recovery of heavy metals (98.2% for Cd2+) and for the precise separation of immune cells (CD4+ T cells). Overall, the in-fiber manufacture method can become a universal technology for the scalable preparation of different types of magnetic-polymeric composite particles with diverse functionalities.

5.
Opt Express ; 21(8): 9584-91, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23609669

RESUMEN

We demonstrate, for the first time, time- and cost-effective replication of sub-micrometer features from a soft PDMS mold onto a bulk chalcogenide glass over a large surface area. A periodic array of sub-micrometer lines (diffraction grating) with period 625 nm, amplitude 45 nm and surface roughness 3 nm was imprinted onto the surface of the chalcogenide AsSe(2) bulk glass at temperature 225°C, i.e. 5°C below the softening point of the glass. Sub-micrometer soft lithography into chalcogenide bulk glasses shows good reliability, reproducibility and promise for feasible fabrication of various dispersive optical elements, anti-reflection surfaces, 2D photonic structures and nano-structured surfaces for enhanced photonic properties and chemical sensing.


Asunto(s)
Calcógenos/química , Vidrio/química , Impresión Molecular/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Calcógenos/efectos de la radiación , Luz , Ensayo de Materiales , Nanopartículas/efectos de la radiación , Tamaño de la Partícula , Propiedades de Superficie/efectos de la radiación
6.
J Colloid Interface Sci ; 353(2): 454-8, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21035816

RESUMEN

Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors.

7.
Opt Lett ; 34(8): 1234-6, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19370128

RESUMEN

Single-mode optical rib waveguides operating at telecommunication wavelengths are successfully patterned via a hot embossing technique in a thermally evaporated chalcogenide glass thin film on a chalcogenide glass substrate. Ellipsometry is used to measure the refractive index dispersion of the pressed film (As(40)Se(60)) and substrate (Ge(17)As(18)Se(65)).

8.
Opt Express ; 16(3): 1466-74, 2008 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-18542221

RESUMEN

We report the kinetics of below band-gap light induced photodarkening in (80-x)GeS(2)-20Ga(2)S(3)-xAgI (x = 0 and 20 mol %) bulk chalcogenide glasses by measuring the time evolution of transmission spectra at every 10 milliseconds. The results prove clearly the enhancement of photosensivity upon doping of AgI compound in glasses. It is interesting to find that PD observed in AgI-doped glass totally disappears two hours later after the laser exposing even at room temperature. In significant contrast to 80GeS(2)-20Ga(2)S(3) glass that the metastable part of PD remains for a long time. We expect such a fast auto-recovery property in AgI-doped glass can be utilized for optical signal processing.


Asunto(s)
Calcógenos/química , Vidrio/química , Halógenos/química , Modelos Químicos , Fotoquímica/métodos , Simulación por Computador , Iones , Luz , Ensayo de Materiales , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA