Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 24(24): e202300421, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37782555

RESUMEN

Galactose Oxidase (GalOx) has gained significant interest in biocatalysis due to its ability for selective oxidation beyond the natural oxidation of galactose, enabling the production of valuable derivatives. However, the practical application of GalOx has been hindered by the limited availability of active and stable biocatalysts, as well as the inherent biochemical limitations such as oxygen (O2 ) dependency and the need for activation. In this study, we addressed these challenges by immobilizing GalOx into agarose-based and Purolite supports to enhance its activity and stability. Additionally, we identified and quantified the oxygen supply limitation into solid catalysts by intraparticle oxygen sensing showing a trade-off between the amount of protein loaded onto the solid support and the catalytic effectiveness of the immobilized enzyme. Furthermore, we coimmobilized a heme-containing protein along with the enzyme to function as an activator. To evaluate the practical application of the immobilized GalOx, we conducted the oxidation of galactose in an instrumented aerated reactor. The results showcased the efficient performance of the immobilized enzyme in the 8 h reaction cycle. Notably, the GalOx immobilized into dextran sulfate-activated agarose exhibited improved stability, overcoming the need for a soluble activator supply, and demonstrated exceptional performance in galactose oxidation. These findings offer promising prospects for the utilization of GalOx in technical biocatalytic applications.


Asunto(s)
Enzimas Inmovilizadas , Hemoproteínas , Enzimas Inmovilizadas/metabolismo , Galactosa Oxidasa/metabolismo , Galactosa , Sefarosa , Biocatálisis , Hemoproteínas/metabolismo , Oxígeno
2.
Food Chem ; 412: 135538, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36738530

RESUMEN

This work reports the optimization of a method using Molecularly Imprinted Polymers (MIPs) for the simultaneous determination of zearalenone and alternariol mycotoxins. The method was optimized using a chemometric approach where in the optimized conditions, the cartridges with a mixture (50:50, w/w) of both MIPs, were loaded with 30 mL of sample, washed with 2 mL of ACN/water (20/80, v/v) and eluted with 2.5 mL of trifluoroacetic acid/MeOH (3/97, v/v). The extracts were analyzed by HPLC coupled to a fluorescence detector (FLD). The optimized method has been applied and validated to the analysis of the mycotoxins in maize, sunflower and olive oils samples with a limit of detection of 5 and 2 µg kg-1, respectively. Recoveries were in the range of 94 % to 108 % (RSD < 6 %) for zearalenone and 92 % to 113 % (RSD < 5 %) for alternariol. The results were confirmed by HPLC-MS/MS.


Asunto(s)
Impresión Molecular , Micotoxinas , Zearalenona , Zearalenona/análisis , Micotoxinas/análisis , Polímeros Impresos Molecularmente , Espectrometría de Masas en Tándem , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos , Cromatografía Líquida de Alta Presión/métodos
3.
Pharmaceutics ; 15(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678885

RESUMEN

Pulmonary surfactant (PS) has been proposed as an efficient drug delivery vehicle for inhaled therapies. Its ability to adsorb and spread interfacially and transport different drugs associated with it has been studied mainly by different surface balance designs, typically interconnecting various compartments by interfacial paper bridges, mimicking in vitro the respiratory air-liquid interface. It has been demonstrated that only a monomolecular surface layer of PS/drug is able to cross this bridge. However, surfactant films are typically organized as multi-layered structures associated with the interface. The aim of this work was to explore the contribution of surface-associated structures to the spreading of PS and the transport of drugs. We have designed a novel vehiculization balance in which donor and recipient compartments are connected by a whole three-dimensional layer of liquid and not only by an interfacial bridge. By combining different surfactant formulations and liposomes with a fluorescent lipid dye and a model hydrophobic drug, budesonide (BUD), we observed that the use of the bridge significantly reduced the transfer of lipids and drug through the air-liquid interface in comparison to what can be spread through a fully open interfacial liquid layer. We conclude that three-dimensional structures connected to the surfactant interfacial film can provide an important additional contribution to interfacial delivery, as they are able to transport significant amounts of lipids and drugs during surfactant spreading.

4.
mSystems ; 7(5): e0064622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36005398

RESUMEN

The gut microbiota is constituted by thousands of microbial interactions, some of which correspond to the exchange of metabolic by-products or cross-feeding. Inulin and xylan are two major dietary polysaccharides that are fermented by members of the human gut microbiota, resulting in different metabolic profiles. Here, we integrated community modeling and bidirectional culturing assays to study the metabolic interactions between two gut microbes, Phocaeicola dorei and Lachnoclostridium symbiosum, growing in inulin or xylan, and how they provide a protective effect in cultured cells. P. dorei (previously belonging to the Bacteroides genus) was able to consume inulin and xylan, while L. symposium only used certain inulin fractions to produce butyrate as a major end product. Constrained-based flux simulations of refined genome-scale metabolic models of both microbes predicted high lactate and succinate cross-feeding fluxes between P. dorei and L. symbiosum when growing in each fiber. Bidirectional culture assays in both substrates revealed that L. symbiosum growth increased in the presence of P. dorei. Carbohydrate consumption analyses showed a faster carbohydrate consumption in cocultures compared to monocultures. Lactate and succinate concentrations in bidirectional cocultures were lower than in monocultures, pointing to cross-feeding as initially suggested by the model. Butyrate concentrations were similar across all conditions. Finally, supernatants from both bacteria cultured in xylan in bioreactors significantly reduced tumor necrosis factor-α-induced inflammation in HT-29 cells and exerted a protective effect against the TcdB toxin in Caco-2 epithelial cells. Surprisingly, this effect was not observed in inulin cocultures. Overall, these results highlight the predictive value of metabolic models integrated with microbial culture assays for probing microbial interactions in the gut microbiota. They also provide an example of how metabolic exchange could lead to potential beneficial effects in the host. IMPORTANCE Microbial interactions represent the inner connections in the gut microbiome. By integrating mathematical modeling tools and microbial bidirectional culturing, we determined how two gut commensals engage in the exchange of cross-feeding metabolites, lactate and succinate, for increased growth in two fibers. These interactions underpinned butyrate production in cocultures, resulting in a significant reduction in cellular inflammation and protection against microbial toxins when applied to cellular models.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Fibras de la Dieta/farmacología , Inulina/farmacología , Xilanos , Toxinas Bacterianas/metabolismo , Células CACO-2 , Fermentación , Clostridioides difficile/metabolismo , Butiratos/análisis , Inflamación , Lactatos , Succinatos
5.
Inorg Chem ; 61(1): 328-337, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34923820

RESUMEN

A family of ruthenium(II) complexes containing one 2,2'-biimidazole (bim) ligand and two polypyridyl (NN) ligands has been prepared and their photophysical and photochemical features have been tested in the presence of tenuazonic acid (TeA), a widespread food and feed mycotoxin of current concern. While not tested in in vivo studies, TeA and other secondary metabolites of Alternaria fungi are suspected to exert adverse effects on the human health, so sensors and rapid analytical procedures are required. It is well-known that 1,3-dicarbonyl compounds such as TeA are relatively easy to deprotonate (the pKa of TeA is 3.5), yielding an enolate anion stabilized by resonance. The chelating and hydrogen-donor features of bim allow simultaneous binding to the metal core and to the target ß-diketonate delocalized anion. Such a binding induces changes in the blue absorption (40 nm bathochromic shift), red luminescence intensity (>75% quenching), and triplet lifetime (0.2 µs decrease) of the Ru(NN)2(bim)2+ luminophore. Moreover, we have computationally rationalized, by time-dependent density functional theory, the structure of the different adducts of Ru-bim complexes with TeA and the electronic nature of the spectral absorption bands and their change upon the addition of TeA.

6.
Anal Bioanal Chem ; 414(10): 3243-3255, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34936009

RESUMEN

The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.


Asunto(s)
Inmunosupresores , Dispositivos Ópticos , Humanos , Inmunoensayo , Microfluídica , Silicio
7.
Microorganisms ; 9(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576801

RESUMEN

Bifidobacterium longum subsp. longum is a prevalent group in the human gut microbiome. Its persistence in the intestinal microbial community suggests a close host-microbe relationship according to age. The subspecies adaptations are related to metabolic capabilities and genomic and functional diversity. In this study, 154 genomes from public databases and four new Chilean isolates were genomically compared through an in silico approach to identify genomic divergence in genes associated with carbohydrate consumption and their possible adaptations to different human intestinal niches. The pangenome of the subspecies was open, which correlates with its remarkable ability to colonize several niches. The new genomes homogenously clustered within subspecies longum, as observed in phylogenetic analysis. B. longum SC664 was different at the sequence level but not in its functions. COG analysis revealed that carbohydrate use is variable among longum subspecies. Glycosyl hydrolases participating in human milk oligosaccharide use were found in certain infant and adult genomes. Predictive genomic analysis revealed that B. longum M12 contained an HMO cluster associated with the use of fucosylated HMOs but only endowed with a GH95, being able to grow in 2-fucosyllactose as the sole carbon source. This study identifies novel genomes with distinct adaptations to HMOs and highlights the plasticity of B. longum subsp. longum to colonize the human gut microbiota.

8.
Clin Chem Lab Med ; 59(5): 935-945, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33554521

RESUMEN

OBJECTIVES: Therapeutic drug monitoring (TDM) plays a crucial role in personalized medicine. It helps clinicians to tailor drug dosage for optimized therapy through understanding the underlying complex pharmacokinetics and pharmacodynamics. Conventional, non-continuous TDM fails to provide real-time information, which is particularly important for the initial phase of immunosuppressant therapy, e.g., with cyclosporine (CsA) and mycophenolic acid (MPA). METHODS: We analyzed the time course over 8 h of total and free of immunosuppressive drug (CsA and MPA) concentrations measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 16 kidney transplant patients. Besides repeated blood sampling, intravenous microdialysis was used for continuous sampling. Free drug concentrations were determined from ultracentrifuged EDTA-plasma (UC) and compared with the drug concentrations in the respective microdialysate (µD). µDs were additionally analyzed for free CsA using a novel immunosensor chip integrated into a fluorescence detection platform. The potential of microdialysis coupled with an optical immunosensor for the TDM of immunosuppressants was assessed. RESULTS: Using LC-MS/MS, the free concentrations of CsA (fCsA) and MPA (fMPA) were detectable and the time courses of total and free CsA comparable. fCsA and fMPA and area-under-the-curves (AUCs) in µDs correlated well with those determined in UCs (r≥0.79 and r≥0.88, respectively). Moreover, fCsA in µDs measured with the immunosensor correlated clearly with those determined by LC-MS/MS (r=0.82). CONCLUSIONS: The new microdialysis-supported immunosensor allows real-time analysis of immunosuppressants and tailor-made dosing according to the AUC concept. It readily lends itself to future applications as minimally invasive and continuous near-patient TDM.


Asunto(s)
Técnicas Biosensibles , Inmunosupresores , Cromatografía Liquida , Monitoreo de Drogas , Humanos , Inmunoensayo , Ácido Micofenólico , Preparaciones Farmacéuticas , Espectrometría de Masas en Tándem
9.
ACS Appl Bio Mater ; 4(9): 6664-6681, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35006970

RESUMEN

A family of six Ru(II) polypyridyl complexes (1-6) which contain phenanthroline-based ligands functionalized with alkyl chains of different lengths (one methyl group, 10 and 21 carbon alkyl chains) and either 1,10-phenanthroline (phen) or 1,4,5,8-tetraazaphenanthrene (TAP) as ancillary ligands have been synthesized and characterized. The influence of the alkyl chain length on their photophysical and photochemical properties as well as in their photobiological applications has been elucidated by monitoring the changes in their MLCT-centered absorption and emission bands. The presence of one methyl group or 10 carbon alkyl chains does not seem to significantly affect the photophysical and photochemical properties of the resulting Ru(II) complexes when compared to the well-known [Ru(phen)3]2+ and [Ru(TAP)2phen]2+. However, an effect on their emission properties and in their ability to photosensitize singlet oxygen is observed for the Ru(II) complexes containing 21 carbon alkyl chains. The binding of these complexes to salmon testes DNA (stDNA) was investigated by observing the changes in the photophysical properties. Complexes 1, 2, 4, and 5 all showed changes in their MLCT bands that could be analyzed using conventional fitting methods, such as the Bard equation. In contrast, complexes 3 and 6, possessing long aliphatic chains, gave rise to nonclassic behavior. In addition to these analyses, both thermal denaturation and circular dichroism studies of 1-6 were carried out in the presence of stDNA which confirmed that these complexes bind to DNA. Confocal microscopy and viability studies in HeLa cervical cancer cells reveal an alkyl chain-length dependence on the cellular uptake and cytotoxicity of the resulting Ru(II) complexes due to an enhancement of their lipophilicity with increasing alkyl chain length. Thus, complexes containing 10 and 21 carbon alkyl chains are rapidly taken up into HeLa cells and, in particular, those with 21 carbon alkyl chains show a significant phototoxicity against the same cell line. Therefore, this study provides further insight into the possible modulation of the photophysical, photochemical, and photobiological properties of Ru(II) polypyridyl complexes by varying the length of the alkyl chains attached to the polypyridyl ligands coordinated to the Ru(II) center and the nature of the auxiliary groups, which we show has a significant effect on photophysical and biological properties.


Asunto(s)
Complejos de Coordinación , Rutenio , Carbono , Complejos de Coordinación/farmacología , ADN , Células HeLa , Humanos , Ligandos , Fenantrolinas , Rutenio/farmacología
10.
J Control Release ; 329: 205-222, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33245954

RESUMEN

This work explores the potential for strategizing pulmonary surfactant (PS) for drug delivery over the respiratory air-liquid interface: the interfacial delivery. The efficacy of PS- and interface-assisted drug vehiculization was determined both in vitro and in vivo using a native purified porcine PS combined with the hydrophobic anti-inflammatory drug Tacrolimus (TAC), a calcineurin inhibitor. In vitro assays were conducted in a novel double surface balance setup designed to emulate compression-expansion dynamics applied to interfacially connected drug donor and recipient compartments. In this setup, PS transported TAC efficiently over air-liquid interfaces, with compression/expansion breathing-like dynamics enhancing rapid interface-assisted diffusion and drug release. The efficacy of PS-assisted TAC vehiculization was also evaluated in vivo in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). In anesthetized mice, TAC combined with PS was intra-nasally (i.n) instilled prior administering i.n. LPS. PS/TAC pre-treatment caused greater TAC internalization into a higher number of lung cells obtained from bronchoalveolar lavages (BAL) than TAC pre-treatment alone. Additionally, the PS/TAC combination but not TAC or PS alone attenuated the LPS-induced pro-inflammatory effects reducing cells and proteins in BAL fluid. These findings indicated that PS-mediated increase in TAC uptake blunted the pro-injurious effects of LPS, suggesting a synergistic anti-inflammatory effect of PS/drug formulations. These in vitro and in vivo results establish the potential utility of PS to open novel effective delivery strategies for inhaled drugs.


Asunto(s)
Preparaciones Farmacéuticas , Surfactantes Pulmonares , Animales , Sistemas de Liberación de Medicamentos , Ratones , Tensoactivos , Porcinos , Tacrolimus
11.
Chem Commun (Camb) ; 56(65): 9332-9335, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32671364

RESUMEN

Two water-soluble amphiphilic Ru(ii) polypyridyl complexes containing N-1,10-phenanthrolin-5-yldocosanamide and 1,10-phenanthroline (phen) or 1,4,5,8-tetraazaphenanthrene (TAP) as ligands were synthesised and their photophysical and photobiological properties evaluated; both complexes showed a rapid cellular uptake and displayed phototoxicity against HeLa cervical cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Tensoactivos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Células HeLa , Humanos , Ligandos , Imagen Óptica , Piridinas/química , Piridinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rutenio/química , Rutenio/farmacología , Solubilidad , Tensoactivos/química , Agua/química
12.
Anal Chem ; 91(3): 2231-2238, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30585489

RESUMEN

Hydrogen sulfide monitoring has become essential in the natural gas industry, biogas production, wastewater treatment plants, paper mills, sewers, and landfills of waste due to its toxic, irritating, extremely flammable, and corrosive features. However, each of the current monitoring technologies (gas chromatography, lead acetate tape, electrochemical, UV and NIR absorption) has its own limitations. Furthermore, the existing luminescent molecular probes for H2S cannot monitor it continuously due to the irreversibility of their reaction with the analyte. Herein, we report the development and application of the first reversible H2S luminescent sensor. The sensing layer capitalizes on the highly photooxidizing phosphorescent [bis(1,10-phenanthroline)(1,4,5,8-tetraazaphenanthrene)]ruthenium(II) dication immobilized on alkali-treated silica microspheres, interrogated with a dedicated fiber-optic phase-sensitive luminometer. The chemosensing mechanism is a fully reversible electron transfer from the analyte to the photoexcited dye. The H2S optosensor exhibits a 0.34-50 ppmv dynamic range, a limit of detection equal to 0.025 ppmv, repeatability, and reproducibility better than 3.2%, plus response and recovery times ( t90 and t-90) shorter than 240 s. The H2S luminescent sensor performance has been verified for more than six months in a biomethane production plant, showing an excellent stability with automatic daily maintenance.

13.
ACS Nano ; 12(11): 11333-11342, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30481972

RESUMEN

Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity, sensitivity, and speed. On the basis of a previously identified epitope-mimicking peptide, or mimotope, we developed a homogeneous fluorescence quenching immunoassay based on gold nanoparticles (AuNPs) and a recombinant epitope-mimicking fusion protein for the detection of mycotoxin fumonisin B1 (FB1). The fumonisin mimotope was cloned as a fusion protein with a yellow fluorescent protein that could be used directly as the tracer for FB1 detection without the need of labeling or a secondary antibody. Furthermore, owing to the fluorescence quenching ability of AuNPs, a homogeneous immunoassay could be performed in a single step without washing steps to separate the unbound tracer. The homogeneous quenching assay showed negligible matrix effects in 5% wheat extract and high sensitivity for FB1 detection, with a dynamic range from 7.3 to 22.6 ng mL-1, a detection limit of 1.1 ng mL-1, and IC50 value of 12.9 ng mL-1, which was significantly lower than the IC50 value of the previously reported assay using the synthetic counterpart of the same mimotope in a microarray format. The homogeneous assay was demonstrated to be specific for fumonisins B1 and B2, as no significant cross-reactivity with other mycotoxins was observed, and acceptable recoveries (86% for FB1 2000 µg kg-1 and 103% for FB1 4000 µg kg-1), with relative standard deviation less than 6.5%, were reported from spiked wheat samples, proving that the method could provide a valuable tool for simple analysis of mycotoxin-contaminated food samples.


Asunto(s)
Proteínas Bacterianas/química , Epítopos/química , Fumonisinas/análisis , Fumonisinas/química , Oro/química , Inmunoensayo , Proteínas Luminiscentes/química , Nanopartículas del Metal/química , Proteínas Bacterianas/análisis , Fluorescencia , Proteínas Luminiscentes/análisis
14.
Small ; 14(20): e1703810, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29665269

RESUMEN

Fluorescence immunoassays are popular for achieving high sensitivity, but they display limitations in biological samples due to strong absorption of light, background fluorescence from matrix components, or light scattering by the biomacromolecules. A powerful strategy to overcome these problems is introduced here by using fluorescent magnetic nanobeads doped with two boron-dipyrromethane dyes displaying intense emission in the visible and near-infrared regions, respectively. Careful matching of the emission and absorption features of the dopants leads to a virtual Stokes shift larger than 150 nm achieved by an intraparticle Förster resonance energy transfer (FRET) process between the donor and the acceptor dyes. Additionally, the magnetic properties of the fluorescent beads allow preconcentration of the sample. To illustrate the usefulness of this approach to increase the sensitivity of fluorescence immunoassays, the novel nanoparticles are employed as labels for quantification of the widely used Tacrolimus (FK506) immunosuppressive drug. The FRET-based competitive inhibition immunoassay yields a limit of detection (LOD) of 0.08 ng mL-1 , with a dynamic range (DR) of 0.15-2.0 ng mL-1 , compared to a LOD of 2.7 ng mL-1 and a DR between 4.1 and 130 ng mL-1 for the immunoassay carried out with direct excitation of the acceptor dye.


Asunto(s)
Inmunoensayo/métodos , Nanopartículas de Magnetita/química , Fenómenos Ópticos , Anticuerpos/metabolismo , Calibración , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Nanopartículas de Magnetita/ultraestructura , Coloración y Etiquetado , Tacrolimus/farmacología
15.
Anal Chem ; 90(8): 5459-5465, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29579378

RESUMEN

In this Article, we describe a fluorescence polarization immunoassay (FPIA) using a new label-near-infrared fluorescent dye. The developed FPIA method was optimized for the rapid analysis of free mycophenolic acid (MPA) in plasma of transplanted patients. The approach is based on the fluorescence competitive assay between the target immunosuppressant and a novel emissive near-infrared fluorescent dye-tagged MPA and MPA-AO for the binding sites of the anti-MPA antibody. The fluorescent analogue of MPA exhibits emission at 654 nm upon excitation at 629 nm (λexcmax) and shows a good photochemical stability and a significant emission quantum yield (0.16) in phosphate buffer media. Free mycophenolic acid was isolated from blood or plasma samples using ultrafiltration prior to analysis. The sample was incubated for 20 min with 5 µg/mL of anti-MPA antibody and 1 nM of MPA-AO before the measurements. The developed FPIA displays a limit of detection of 0.8 ng/mL (10% binding inhibition) and a dynamic range of 1.7-39 ng/mL (20%-80% binding inhibition) in a PBST buffer, fitting the therapeutic requirements. The immunoassay selectivity was evaluated by measuring the cross-reactivity to other immunosuppressive drugs administered in combination with MPA (cyclosporin A and tacrolimus), as well as for the metabolite MPA glucuronide. The assay has been successfully applied to the analysis of free MPA in the blood of a heart-transplanted patient after oral administration of both mycophenolate mofetil (MMF) and tacrolimus, and the results have been compared with those obtained by rapid-resolution liquid chromatography with diode array detection (RRLC-DAD).


Asunto(s)
Inmunoensayo de Polarización Fluorescente , Ácido Micofenólico/sangre , Adulto , Femenino , Colorantes Fluorescentes/química , Humanos , Rayos Infrarrojos , Estructura Molecular
16.
Polymers (Basel) ; 10(3)2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30966269

RESUMEN

Temperature is a key parameter in many fields and luminescence-based temperature sensing is a solution for those applications in which traditional (mechanical, electrical, or IR-based) thermometers struggle. Amongst the indicator dyes for luminescence thermometry, Ru(II) polyazaheteroaromatic complexes are an appealing option to profit from the widespread commercial technologies for oxygen optosensing based on them. Six ruthenium dyes have been studied, engineering their structure for both photostability and highest temperature sensitivity of their luminescence. The most apt Ru(II) complex turned out to be bis(1,10-phenanthroline)(4-chloro-1,10-phenanthroline)ruthenium(II), due to the combination of two strong-field chelating ligands (phen) and a substituent with electron withdrawing effect on a conjugated position of the third ligand (4-Clphen). In order to produce functional sensors, the dye has been best embedded into poly(ethyl cyanoacrylate), due to its low permeability to O2, high temperature sensitivity of the indicator dye incorporated into this polymer, ease of fabrication, and excellent optical quality. Thermosensitive elements have been fabricated thereof as optical fiber tips for macroscopic applications (water courses monitoring) and thin spots for microscopic uses (temperature measurements in cell culture-on-a-chip). With such dye/polymer combination, temperature sensing based on luminescence lifetime measurements allows 0.05 °C resolution with linear response in the range of interest (0⁻40 °C).

17.
Chemistry ; 23(63): 15974-15983, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-28869685

RESUMEN

A 2,3-diaminophenazine bis-urea fluorescent probe monomer (1) was developed. It responds to phenylphosphate and phosphorylated amino acids in a ratiometric fashion with enhanced fluorescence accompanied by the development of a redshifted emission band arising from an excited-state proton transfer (ESPT) process in the hydrogen-bonded probe/analyte complex. The two urea groups of 1 form a cleft-like binding pocket (Kb >1010  L2 mol-2 for 1:2 complex). Imprinting of 1 in presence of ethyl ester- and fluorenylmethyloxycarbonyl (Fmoc)-protected phosphorylated tyrosine (Fmoc-pTyr-OEt) as the template, methacrylamide as co-monomer, and ethyleneglycol dimethacrylate as cross-linker gave few-nanometer-thick molecularly imprinted polymer (MIP) shells on silica core microparticles with excellent selectivity for the template in a buffered biphasic assay. The supramolecular recognition features were established by spectroscopic and NMR studies. Rational screening of co-monomers and cross-linkers allowed to single out the best performing MIP components, giving significant imprinting factors (IF>3.5) while retaining ESPT emission and the ratiometric response in the thin polymer shell. Combination of the bead-based detection scheme with the phase-transfer assay dramatically improved the IF to 15.9, allowing sensitive determination of the analyte directly in aqueous media.


Asunto(s)
Impresión Molecular , Nanoestructuras/química , Polímeros/química , Colorantes Fluorescentes/química , Fenazinas/química , Fosforilación , Polímeros/síntesis química , Protones , Dióxido de Silicio/química
18.
Langmuir ; 33(32): 7929-7939, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28738158

RESUMEN

Pulmonary surfactant is a crucial system to stabilize the respiratory air-liquid interface. Furthermore, pulmonary surfactant has been proposed as an effective method for targeting drugs to the lungs. However, few studies have examined in detail the mechanisms of incorporation of drugs into surfactant, the impact of the presence of drugs on pulmonary surfactant performance at the interface under physiologically meaningful conditions, or the ability of pulmonary surfactant to use the air-liquid interface to vehiculise drugs to long distances. This study focuses on the ability of pulmonary surfactant to interfacially vehiculize corticosteroids such as beclomethasone dipropionate (BDP) or Budesonide (BUD) as model drugs. The main objectives have been to (a) characterize the incorporation of corticosteroids into natural and synthetic surfactants, (b) evaluate whether the presence of corticosteroids affects surfactant functionality, and (c) determine whether surfactant preparations enable the efficient spreading and distribution of BDP and BUD along the air-liquid interface. We have compared the performance of a purified surfactant from porcine lungs and two clinical surfactants: Poractant alfa, a natural surfactant of animal origin extensively used to treat premature babies, and CHF5633, a new synthetic surfactant preparation currently under clinical trials. Both, natural and clinical surfactants spontaneously incorporated corticosteroids up to at least 10% by mass with respect to phospholipid content. The presence of the drugs did not interfere with their ability to efficiently adsorb into air-liquid interfaces and form surface active films able to reach and sustain very low surface tensions (<2 mN/m) under compression-expansion cycling mimicking breathing dynamics. Furthermore, the combination of clinical surfactant with corticosteroids efficiently promoted the active diffusion of the drug to long distances along the air-liquid interface. This effect could not be mimicked by vehiculisation of corticosteroids in liposomes or in micellar emulsions similar to the formulations currently in use to deliver anti-inflammatory corticosteroids through inhalation.


Asunto(s)
Surfactantes Pulmonares/química , Corticoesteroides , Animales , Emulsiones , Pulmón , Tensión Superficial , Porcinos
19.
Anal Chem ; 88(7): 3959-66, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26965182

RESUMEN

We have developed disposable color-changing polymeric films for quantification of furfural-a freshness indicator-in beer using a smartphone-based reader. The films are prepared by radical polymerization of 4-vinylaniline, as a furfural-sensitive indicator monomer, 2-hydroxymethyl methacrylate as a comonomer, and ethylene dimethyl methacrylate (EDMA) as a cross-linker. The sensing mechanism is based on the Stenhouse reaction in which aniline and furfural react in acidic media with the generation of a deep red cyanine derivative, absorbing at 537 nm, which is visible to the naked eye. The colorimetric response has been monitored using either a portable fiber-optic spectrophotometer or the built-in camera of a smartphone. Under the optimized conditions, a linear response to furfural in beer was obtained in the 39 to 500 µg L(-1) range, with a detection limit of 12 µg L(-1), thus improving the performance of other well-established colorimetric or chromatographic methods. The novel films are highly selective to furfural, and no cross-reactivity has been observed from other volatile compounds generated during beer aging. A smartphone application (app), developed for Android platforms, measures the RGB color coordinates of the sensing membranes after exposure to the analyte. Following data processing, the signals are converted into concentration values by preloaded calibration curves. The method has been applied to determination of furfural in pale lager beers with different storage times at room temperature. A linear correlation (r > 0.995) between the storage time and the furfural concentration in the samples has been confirmed; our results have been validated by HPLC with diode-array detection.


Asunto(s)
Cerveza/análisis , Colorimetría/instrumentación , Colorimetría/métodos , Furaldehído/análisis , Polímeros/química , Teléfono Inteligente , Cromatografía Líquida de Alta Presión , Polímeros/síntesis química
20.
Anal Bioanal Chem ; 408(7): 1843-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26342308

RESUMEN

This work describes the development and application of class-selective molecularly imprinted polymers (MIPs) for the analysis of beta-lactamase-resistant penicillins, namely cloxacillin (CLOXA), oxacillin (OXA), and dicloxacillin (DICLOXA), in milk samples. Our method is based on molecularly imprinted solid-phase extraction (MISPE) coupled to high-performance liquid chromatography (HPLC) with diode-array detection (DAD). 2-Biphenylylpenicillin (2BPEN), a surrogate with a close resemblance to beta-lactamase-resistant penicillins in terms of size, shape, hydrophobicity, and functionality, was synthesized and used as the template for the polymer synthesis. A MIP library was prepared and screened to select the optimum functional monomer, N-(2-aminoethyl)methacrylamide, and cross-linker, trimethylolpropane trimethacrylate, that provided the best recognition for the target antibiotics. For the MISPE application, the MIPs were prepared in the form of microspheres, using porous silica beads (40-75 µm) as sacrificial scaffolds. The developed MISPE method enables efficient extraction from aqueous samples and analysis of the antimicrobials, when followed by a selective washing with 2 mL acetonitrile-water (20:80 v/v) and elution with 1 mL 0.05 mol L(-1) tetrabutylammonium in methanol. The analytical method was validated according to EU guideline 2002/657/EC. The limits of quantification (S/N = 10) were in the 5.3-6.3 µg kg(-1) range, well below the maximum residue limits (MRLs) currently established. Inter-day mean recoveries were in the range 99-102 % with RSDs below 9 %, improving on the performance of previously reported MISPE methods for the analysis of CLOXA, OXA, or DICLOXA in milk samples.


Asunto(s)
Antibacterianos/aislamiento & purificación , Leche/química , Impresión Molecular/métodos , Penicilinas/aislamiento & purificación , Polímeros/química , Extracción en Fase Sólida/métodos , Animales , Cromatografía Líquida de Alta Presión/métodos , Cloxacilina/aislamiento & purificación , Dicloxacilina/aislamiento & purificación , Límite de Detección , Oxacilina/aislamiento & purificación , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...