Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 561863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276573

RESUMEN

Selective cargo packaging into bacterial extracellular vesicles has been reported and implicated in many biological processes, however, the mechanism behind the selectivity has remained largely unexplored. In this study, proteomic analysis of outer membrane (OM) and OM vesicle (OMV) fractions from enterotoxigenic E. coli revealed significant differences in protein abundance in the OMV and OM fractions for cultures shifted to oxidative stress conditions. Analysis of sequences of proteins preferentially packaged into OMVs showed that proteins with oxidizable residues were more packaged into OMVs in comparison with those retained in the membrane. In addition, the results indicated two distinct classes of OM-associated proteins were differentially packaged into OMVs as a function of peroxide treatment. Implementing a Bayesian hierarchical model, OM lipoproteins were determined to be preferentially exported during stress whereas integral OM proteins were preferentially retained in the cell. Selectivity was determined to be independent of transcriptional regulation of the proteins upon oxidative stress and was validated using randomly selected protein candidates from the different cargo classes. Based on these data, a hypothetical functional and mechanistic basis for cargo selectivity was tested using OmpA constructs. Our study reveals a basic mechanism for cargo selectivity into OMVs that may be useful for the engineering of OMVs for future biotechnological applications.

2.
EMBO Rep ; 21(11): e50830, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33124745

RESUMEN

Inflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.


Asunto(s)
Lipopolisacáridos , Choque Séptico , Animales , Caspasas/genética , Caspasas Iniciadoras , Dinaminas , Inflamasomas , Lipopolisacáridos/toxicidad , Ratones , Choque Séptico/inducido químicamente , Choque Séptico/genética
3.
mBio ; 8(5)2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974614

RESUMEN

The Gram-negative bacterial cell wall component lipopolysaccharide (LPS) is recognized by the noncanonical inflammasome protein caspase-11 in the cytosol of infected host cells and thereby prompts an inflammatory immune response linked to sepsis. Host guanylate binding proteins (GBPs) promote infection-induced caspase-11 activation in tissue culture models, and yet their in vivo role in LPS-mediated sepsis has remained unexplored. LPS can be released from lysed bacteria as "free" LPS aggregates or actively secreted by live bacteria as a component of outer membrane vesicles (OMVs). Here, we report that GBPs control inflammation and sepsis in mice injected with either free LPS or purified OMVs derived from Gram-negative Escherichia coli In agreement with our observations from in vivo experiments, we demonstrate that macrophages lacking GBP2 expression fail to induce pyroptotic cell death and proinflammatory interleukin-1ß (IL-1ß) and IL-18 secretion when exposed to OMVs. We propose that in order to activate caspase-11 in vivo, GBPs control the processing of bacterium-derived OMVs by macrophages as well as the processing of circulating free LPS by as-yet-undetermined cell types.IMPORTANCE The bacterial cell wall component LPS is a strong inducer of inflammation and is responsible for much of the toxicity of Gram-negative bacteria. Bacteria shed some of their cell wall and its associated LPS in the form of outer membrane vesicles (OMVs). Recent work demonstrated that secreted OMVs deliver LPS into the host cell cytosol by an unknown mechanism, resulting in the activation of the proinflammatory LPS sensor caspase-11. Here, we show that activation of cytosolic caspase-11 by OMVs requires additional host factors, the so-called guanylate binding proteins (GBPs). The discovery of GBPs as regulators of OMV-mediated inflammation paves the way toward a mechanistic understanding of the host response toward bacterial OMVs and may lead to effective strategies to ameliorate inflammation induced by bacterial infections.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Escherichia coli/patogenicidad , Proteínas de Unión al GTP/metabolismo , Inflamasomas/inmunología , Inflamasomas/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Animales , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/genética , Caspasas/metabolismo , Caspasas Iniciadoras , Células Cultivadas , Citosol/metabolismo , Activación Enzimática , Inflamación , Interleucina-18/biosíntesis , Interleucina-1beta/biosíntesis , Lipopolisacáridos/inmunología , Ratones , Piroptosis , Vesículas Secretoras/metabolismo
4.
Cell Microbiol ; 18(11): 1525-1536, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27673272

RESUMEN

Over the past two decades, researchers studying both microbial and host cell communities have gained an appreciation for the ability of bacteria to produce, regulate, and functionally utilize outer membrane vesicles (OMVs) as a means to survive and interact with their cellular and acellular environments. Common ground has emerged, as it appears that vesicle production is an environmentally controlled and specific secretion process; however, it has been challenging to discover the principles that govern fundamentals of vesicle-mediated transport. Namely, there does not appear to be a single mechanism modulating OMV export, nor universal "markers" for OMV cargo incorporation, nor particular host cell responses common to treatment with all OMVs. Given the diversity of species studied, their differences in envelope architecture and composition, the diversity of environmentally regulated bacterial processes, and the variety of interactions between bacteria and their abiotic and biotic environments, this is hardly surprising. Nevertheless, the ability of bacteria to control exported material in the context of a packaged insoluble particle, a vesicle, is emerging as a significant contribution to bacterial viability, biofilm communities, and bacterial-host interactions. In this review, we focus on detailing important, recent findings regarding the content and functional differences in bacterially secreted vesicles that are influenced by growth conditions.


Asunto(s)
Bacterias Gramnegativas/fisiología , Infecciones por Bacterias Gramnegativas/microbiología , Interacciones Huésped-Patógeno , Vesículas Secretoras/fisiología , Animales , Biopelículas , Humanos
5.
PLoS One ; 10(9): e0139200, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26406465

RESUMEN

The production of outer membrane vesicles by Gram-negative bacteria has been well documented; however, the mechanism behind the biogenesis of these vesicles remains unclear. Here a high-throughput experimental method and systems-scale analysis was conducted to determine vesiculation values for the whole genome knockout library of Escherichia coli mutant strains (Keio collection). The resultant dataset quantitatively recapitulates previously observed phenotypes and implicates nearly 150 new genes in the process of vesiculation. Gene functional and biochemical pathway analyses suggest that mutations that truncate outer membrane structures such as lipopolysaccharide and enterobacterial common antigen lead to hypervesiculation, whereas mutants in oxidative stress response pathways result in lower levels. This study expands and refines the current knowledge regarding the cellular pathways required for outer membrane vesiculation in E. coli.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/genética , Escherichia coli/genética , Genoma Bacteriano , Proteínas de la Membrana Bacteriana Externa/genética , Membrana Celular/genética , Vesículas Citoplasmáticas/metabolismo , Escherichia coli/metabolismo , Mutación , Fenotipo
6.
PLoS One ; 10(1): e0116749, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25608000

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly. METHODOLOGY/PRINCIPAL FINDINGS: We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding. CONCLUSION/SIGNIFICANCE: We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream.


Asunto(s)
MicroARNs/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Sitios de Unión , Dicroismo Circular , Humanos , MicroARNs/metabolismo , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...