Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mech Ageing Dev ; 221: 111974, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038666

RESUMEN

Frailty is a physiological geriatric syndrome, caused by immunosenescence, inflammation and alterations at the protein level leading to metabolic and microbiota changes. Currently, this syndrome is evaluated clinically with the Frailty-VIG index. The aim of the study was therefore to investigate the potential suitability of saliva as a non-invasive proximal biological fluid for the characterisation and identification of possible protein-level biomarkers in frailty syndrome. This cross-sectional study was conducted in a rural population of older Spanish adults using the SMR proteomics technique. A differential protein profile of eight potential and surrogate proteins (CYTC, CYTD, CYTS, CYTB, MIF, ALBU, CD44 and B2MG) was detected in saliva, all of which correlated with factors characterising frailty syndrome, such as vascular ageing (arterial stiffness and cardiovascular disease), obesity, mood problems, global cognitive impairment, changes in gait and hand pressure strength. The proteins CYTD (r = 0.415, p = 0.013) and CYTC (r = 0.280, p = 0.026), which were detected differentially in the protein profile, were associated with the Frailty-VIG index. All analysed proteins are associated not only with the clinical symptoms of frailty syndrome, but also with an acute inflammatory response, endothelial cell proliferation and the complement system, among others.


Asunto(s)
Biomarcadores , Fragilidad , Proteómica , Saliva , Humanos , Saliva/metabolismo , Masculino , Anciano , Biomarcadores/metabolismo , Biomarcadores/análisis , Femenino , Fragilidad/metabolismo , Fragilidad/diagnóstico , Proteómica/métodos , Anciano de 80 o más Años , Estudios Transversales , Anciano Frágil
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612828

RESUMEN

Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.


Asunto(s)
Matriz Extracelular Descelularizada , Envejecimiento de la Piel , Humanos , Anciano , Materiales Biocompatibles/farmacología , Hidrogeles , Colágeno
3.
Biomedicines ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884998

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose outbreak in 2019 led to an ongoing pandemic with devastating consequences for the global economy and human health. According to the World Health Organization, COVID-19 has affected more than 481 million people worldwide, with 6 million confirmed deaths. The joint efforts of the scientific community have undoubtedly increased the pace of production of COVID-19 vaccines, but there is still so much uncharted ground to cover regarding the mechanisms of SARS-CoV-2 infection, replication and host response. These issues can be approached by proteomics with unprecedented capacity paving the way for the development of more efficient strategies for patient care. In this study, we present a deep proteome analysis that has been performed on a cohort of 72 COVID-19 patients aiming to identify serum proteins assessing the dynamics of the disease at different age ranges. A panel of 53 proteins that participate in several functions such as acute-phase response and inflammation, blood coagulation, cell adhesion, complement cascade, endocytosis, immune response, oxidative stress and tissue injury, have been correlated with patient severity, suggesting a molecular basis for their clinical stratification. Eighteen protein candidates were further validated by targeted proteomics in an independent cohort of 84 patients including a group of individuals that had satisfactorily resolved SARS-CoV-2 infection. Remarkably, all protein alterations were normalized 100 days after leaving the hospital, which further supports the reliability of the selected proteins as hallmarks of COVID-19 progression and grading. The optimized protein panel may prove its value for optimal severity assessment as well as in the follow up of COVID-19 patients.

4.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32276971

RESUMEN

Bacillus thuringiensis (Bt) is the most widely used active ingredient for biological insecticides. The composition of δ-endotoxins (Cry and Cyt proteins) in the parasporal crystal determines the toxicity profile of each Bt strain. However, a reliable method for their identification and quantification has not been available, due to the high sequence identity of the genes that encode the δ-endotoxins and the toxins themselves. Here, we have developed an accurate and reproducible mass spectrometry-based method (liquid chromatography-tandem mass spectrometry-multiple reaction monitoring [LC-MS/MS-MRM]) using isotopically labeled proteotypic peptides for each protein in a particular mixture to determine the relative proportion of each δ-endotoxin within the crystal. To validate the method, artificial mixtures containing Cry1Aa, Cry2Aa, and Cry6Aa were analyzed. Determination of the relative abundance of proteins (in molarity) with our method was in good agreement with the expected values. This method was then applied to the most common commercial Bt-based products, DiPel DF, XenTari GD, VectoBac 12S, and Novodor, in which between three and six δ-endotoxins were identified and quantified in each product. This novel approach is of great value for the characterization of Bt-based products, not only providing information on host range, but also for monitoring industrial crystal production and quality control and product registration for Bt-based insecticides.IMPORTANCEBacillus thuringiensis (Bt)-based biological insecticides are used extensively to control insect pests and vectors of human diseases. Bt-based products provide greater specificity and biosafety than broad-spectrum synthetic insecticides. The biological activity of this bacterium resides in spores and crystals comprising complex mixtures of toxic proteins. We developed and validated a fast, accurate, and reproducible method for quantitative determination of the crystal components of Bt-based products. This method will find clear applications in the improvement of various aspects of the industrial production process of Bt. An important aspect of the production of Bt-based insecticides is its quality control. By specifically quantifying the relative proportion of each of the toxins that make up the crystal, our method represents the most consistent and repeatable evaluation procedure in the quality control of different batches produced in successive fermentations. This method can also contribute to the design of specific culture media and fermentation conditions that optimize Bt crystal composition across a range of Bt strains that target different pestiferous insects. Quantitative information on crystal composition should also prove valuable to phytosanitary product registration authorities that oversee the safety and efficacy of crop protection products.


Asunto(s)
Bacillus thuringiensis/química , Proteínas Bacterianas/aislamiento & purificación , Cromatografía Liquida/métodos , Endotoxinas/aislamiento & purificación , Proteínas Hemolisinas/aislamiento & purificación , Insecticidas/aislamiento & purificación , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Endotoxinas/química , Proteínas Hemolisinas/química , Insecticidas/química , Proteoma/química
5.
Plant Cell Physiol ; 61(1): 105-117, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529085

RESUMEN

Nitric oxide (NO) is a crucial signaling molecule that conveys its bioactivity mainly through protein S-nitrosylation. This is a reversible post-translational modification (PTM) that may affect protein function. S-nitrosoglutathione (GSNO) is a cellular NO reservoir and NO donor in protein S-nitrosylation. The enzyme S-nitrosoglutathione reductase (GSNOR) degrades GSNO, thereby regulating indirectly signaling cascades associated with this PTM. Here, the two GSNORs of the legume Lotus japonicus, LjGSNOR1 and LjGSNOR2, have been functionally characterized. The LjGSNOR1 gene is very active in leaves and roots, whereas LjGSNOR2 is highly expressed in nodules. The enzyme activities are regulated in vitro by redox-based PTMs. Reducing conditions and hydrogen sulfide-mediated cysteine persulfidation induced both activities, whereas cysteine oxidation or glutathionylation inhibited them. Ljgsnor1 knockout mutants contained higher levels of S-nitrosothiols. Affinity chromatography and subsequent shotgun proteomics allowed us to identify 19 proteins that are differentially S-nitrosylated in the mutant and the wild-type. These include proteins involved in biotic stress, protein degradation, antioxidant protection and photosynthesis. We propose that, in the mutant plants, deregulated protein S-nitrosylation contributes to developmental alterations, such as growth inhibition, impaired nodulation and delayed flowering and fruiting. Our results highlight the importance of GSNOR function in legume biology.


Asunto(s)
Aldehído Oxidorreductasas/genética , Genes de Plantas , Lotus/genética , Aldehído Oxidorreductasas/metabolismo , Cisteína/metabolismo , Lotus/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína S/genética , Proteína S/metabolismo , Proteómica , S-Nitrosoglutatión , S-Nitrosotioles/metabolismo , Espectrometría de Masas en Tándem
6.
J Proteomics ; 152: 138-149, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-27989941

RESUMEN

Despite the maturity reached by targeted proteomic strategies, reliable and standardized protocols are urgently needed to enhance reproducibility among different laboratories and analytical platforms, facilitating a more widespread use in biomedical research. To achieve this goal, the use of dimensionless relative retention times (iRT), defined on the basis of peptide standard retention times (RT), has lately emerged as a powerful tool. The robustness, reproducibility and utility of this strategy were examined for the first time in a multicentric setting, involving 28 laboratories that included 24 of the Spanish network of proteomics laboratories (ProteoRed-ISCIII). According to the results obtained in this study, dimensionless retention time values (iRTs) demonstrated to be a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups both intra- and inter-laboratories. iRT values also showed very low variability over long time periods. Furthermore, parallel quantitative analyses showed a high reproducibility despite the variety of experimental strategies used, either MRM (multiple reaction monitoring) or pseudoMRM, and the diversity of analytical platforms employed. BIOLOGICAL SIGNIFICANCE: From the very beginning of proteomics as an analytical science there has been a growing interest in developing standardized methods and experimental procedures in order to ensure the highest quality and reproducibility of the results. In this regard, the recent (2012) introduction of the dimensionless retention time concept has been a significant advance. In our multicentric (28 laboratories) study we explore the usefulness of this concept in the context of a targeted proteomics experiment, demonstrating that dimensionless retention time values is a useful tool for transferring and sharing peptide retention times across different chromatographic set-ups.


Asunto(s)
Investigación Biomédica/métodos , Cromatografía Liquida/métodos , Proteómica/métodos , Investigación Biomédica/normas , Cromatografía Liquida/normas , Variaciones Dependientes del Observador , Proteómica/organización & administración , Proteómica/normas , Estándares de Referencia , Reproducibilidad de los Resultados , Investigación/normas
7.
Mol Cell Endocrinol ; 404: 37-45, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25617717

RESUMEN

We investigated the role of VDAC2 in human epithelial thyroid tumours using proteomic 2D-DIGE analysis and qRT-PCR. We found a significant up-regulation of VDAC2 in thyroid tumours and in thyroid tumour cell lines (TPC-1 and CAL-62). We did not detect overexpression of VDAC2 in a normal thyroid cell line (Nthy-ori 3-1). Silico analysis revealed that two proteins, BAK1 and BAX, had a strong relationship with VDAC2. BAK1 gene expression showed down-regulation in thyroid tumours (follicular and papillary tumours) and in TPC-1 and CAL-62 cell lines. Transient knockdown of VDAC2 in TPC-1 and CAL-62 promoted upregulation of the BAK1 gene and protein expression, and increased susceptibility to sorafenib treatment. Overexpression of the BAK1 gene in CAL-62 showed lower sorafenib sensitivity than VDAC2 knockdown cells. We propose the VDAC2 gene as a novel therapeutic target in these tumours.


Asunto(s)
Neoplasias Glandulares y Epiteliales/metabolismo , Proteómica/métodos , Neoplasias de la Tiroides/metabolismo , Electroforesis Bidimensional Diferencial en Gel/métodos , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Glandulares y Epiteliales/patología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Compuestos de Fenilurea/farmacología , Sorafenib , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Regulación hacia Arriba , Canal Aniónico 2 Dependiente del Voltaje/genética , Adulto Joven , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
8.
J Proteome Res ; 13(1): 158-72, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24138474

RESUMEN

The Spanish team of the Human Proteome Project (SpHPP) marked the annotation of Chr16 and data analysis as one of its priorities. Precise annotation of Chromosome 16 proteins according to C-HPP criteria is presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of DNA Elements (ENCODE) data sets were used to obtain further information relative to cell/tissue specific chromosome 16 coding gene expression patterns and to infer the presence of missing proteins. Twenty-four shotgun 2D-LC-MS/MS and gel/LC-MS/MS MIAPE compliant experiments, representing 41% coverage of chromosome 16 proteins, were performed. Furthermore, mapping of large-scale multicenter mass spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines into RNA-Seq data allowed further insights relative to correlation of chromosome 16 transcripts and proteins. Detection and quantification of chromosome 16 proteins in biological matrices by SRM procedures are also primary goals of the SpHPP. Two strategies were undertaken: one focused on known proteins, taking advantage of MS data already available, and the second, aimed at the detection of the missing proteins, is based on the expression of recombinant proteins to gather MS information and optimize SRM methods that will be used in real biological samples. SRM methods for 49 known proteins and for recombinant forms of 24 missing proteins are reported in this study.


Asunto(s)
Cromosomas Humanos Par 16 , Proteoma , Transcriptoma , Cromatografía Liquida , Humanos , Espectrometría de Masas , Análisis de Secuencia de ARN
9.
Metallomics ; 2(9): 646-57, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21072356

RESUMEN

A dual-stable isotope tracer experiment was carried out with Fe-deficient sugar beet plants grown hydroponically and resupplied with differentially Fe labeled racemic and meso Fe(iii)-chelates of the ethylendiamine di(o-hydroxyphenylacetic) acid (o,oEDDHA). No short-term Fe isotope exchange reactions occurred in the nutrient solution and plants did not discriminate between (54)Fe and (57)Fe. After 3-6 h, stable Fe isotopes, chelating agents and chelates were analyzed in roots, xylem sap and leaves by ICP-MS and HPLC-ESI/TOFMS. Ferric chelate reductase rates, xylem transport and total uptake were 2-fold higher with the meso isomer than with the racemic one. Both chelating agent isomers were incorporated and distributed by plants at similar rates, in amounts one order of magnitude lower than those of Fe. After 6 h of Fe resupply, most of the Fe acquired was localized in roots, whereas most of the chelating agent was in leaves. In a separate experiment, Fe-deficient sugar beet and tomato plants were treated with different concentrations of Fe(iii)-o,oEDDHA (with a meso/racemic ratio of 1). The xylem sap Fe concentration at 24 h was unaffected by the chelate concentration, with xylem Fe(iii)-o,oEDDHA accounting for 1-18% of total Fe and xylem meso/racemic ratio close to 1. Although most of the Fe coming from Fe(iii)-o,oEDDHA was taken up through a reductive dissociative mechanism, a small part of the Fe may be taken up via non-dissociative mechanisms.


Asunto(s)
Beta vulgaris/metabolismo , Compuestos Férricos/metabolismo , Quelantes del Hierro/metabolismo , Solanum lycopersicum/metabolismo , Xilema/metabolismo , Isótopos , Raíces de Plantas/enzimología , Estereoisomerismo
10.
Plant Cell Physiol ; 51(1): 91-102, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19942594

RESUMEN

The identification of Fe transport forms in plant xylem sap is crucial to the understanding of long-distance Fe transport processes in plants. Previous studies have proposed that Fe may be transported as an Fe-citrate complex in plant xylem sap, but such a complex has never been detected. In this study we report the first direct and unequivocal identification of a natural Fe complex in plant xylem sap. A tri-Fe(III), tri-citrate complex (Fe(3)Cit(3)) was found in the xylem sap of Fe-deficient tomato (Solanum lycopersicum Mill. cv. 'Tres Cantos') resupplied with Fe, by using an integrated mass spectrometry approach based on exact molecular mass, isotopic signature and Fe determination and retention time. This complex has been modeled as having an oxo-bridged tri-Fe core. A second complex, a di-Fe(III), di-citrate complex was also detected in Fe-citrate standards along with Fe(3)Cit(3), with the allocation of Fe between the two complexes depending on the Fe to citrate ratio. These results provide evidence for Fe-citrate complex xylem transport in plants. The consequences for the role of Fe to citrate ratio in long-distance transport of Fe in xylem are also discussed.


Asunto(s)
Ácido Cítrico/metabolismo , Compuestos Férricos/metabolismo , Deficiencias de Hierro , Sustancias Macromoleculares/metabolismo , Solanum lycopersicum/metabolismo , Xilema/metabolismo , Bioquímica/métodos , Transporte Biológico Activo/fisiología , Solanum lycopersicum/citología , Espectrometría de Masas , Estructura Molecular , Estereoisomerismo , Xilema/citología
11.
Rapid Commun Mass Spectrom ; 24(1): 109-19, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19967741

RESUMEN

Fertilizers based on synthetic polyaminocarboxylate ferric chelates have been known since the 1950s to be successful in supplying Fe to plants. In commercial Fe(III)-chelate fertilizers, a significant part of the water-soluble Fe-fraction consists of still uncharacterized Fe byproducts, whose agronomical value is unknown. Although collision-induced dissociation (CID) tandem mass spectrometry (MS/MS) is a valuable tool for the identification of such compounds, no fragmentation data have been reported for most Fe(III)-chelate fertilizers. The aim of this study was to characterize the CID-MS(2) fragmentation patterns of the major synthetic Fe(III)-chelates used as Fe-fertilizers, and subsequently use this technique for the characterization of commercial fertilizers. Quadrupole-time-of-flight (QTOF) and spherical ion trap mass analyzers equipped with an electrospray ionization (ESI) source were used. ESI-CID-MS(2) spectra obtained were richer when using the QTOF device. Specific differences were found among Fe(III)-chelate fragmentation patterns, even in the case of positional isomers. The analysis of a commercial Fe(III)-chelate fertilizer by high-performance liquid chromatography (HPLC) coupled to ESI-MS(QTOF) revealed two previously unknown, Fe-containing compounds, that were successfully identified by a comprehensive comparison of the ESI-CID-MS(2)(QTOF) spectra with those of pure chelates. This shows that HPLC/ESI-CID-MS(2)(QTOF), along with the Fe(III)-chelate fragmentation patterns, could be a highly valuable tool to directly characterize the water-soluble Fe fraction in Fe(III)-chelate fertilizers. This could be of great importance in issues related to crop Fe-fertilization, both from an agricultural and an environmental point of view.


Asunto(s)
Algoritmos , Quelantes/análisis , Fertilizantes/análisis , Compuestos de Hierro/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Quelantes/química , Compuestos de Hierro/química
12.
Rapid Commun Mass Spectrom ; 23(11): 1694-702, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19412919

RESUMEN

The Fe(III)-chelate of ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,oEDDHA) is generally considered as the most efficient and widespread Fe fertilizer for fruit crops and intensive horticulture. The determination of the xenobiotic chelating agent o,oEDDHA inside the plant is a key issue in the study of this fertilizer. Both the low concentrations of o,oEDDHA expected and the complexity of plant matrices have been important drawbacks in the development of analytical methods for the determination of o,oEDDHA in plant tissues. The determination of o,oEDDHA in plant materials has been tackled in this study by liquid chromatography coupled to mass spectrometry using several plant species and tissues. Two types of internal standards have been tested: Iron stable isotope labeled compounds and a structural analogue compound, the Fe(III) chelate of ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenylacetic) acid (o,oEDDHMA). Iron stable isotope labeled internal standards did not appear to be suitable because of the occurrence of isobaric endogenous compounds and/or isotope exchange reactions between plant native Fe pools and the Fe stable isotope of the internal standard. However, the structural analogue Fe(III)-o,oEDDHMA is an adequate internal standard for the determination of both isomers of o,oEDDHA (racemic and meso) in plant tissues. The method was highly sensitive, with limits of detection and quantification in the range of 3-49 and 11-162 pmol g(-1) fresh weight, respectively, and analyte recoveries were in the range of 74-116%. Using this methodology, both o,oEDDHA isomers were found in all tissues of sugar beet and tomato plants treated with 90 microM Fe(III)-o,oEDDHA for 24 h, including leaves, roots and xylem sap. This methodology constitutes a useful tool for studies on o,oEDDHA plant uptake, transport and allocation.


Asunto(s)
Beta vulgaris/química , Cromatografía Liquida/métodos , Etilenodiaminas/química , Espectrometría de Masas/métodos , Solanum lycopersicum/química , Xenobióticos/química , Quelantes/química , Fertilizantes/análisis , Isomerismo
13.
J Am Soc Mass Spectrom ; 18(1): 37-47, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17010641

RESUMEN

A high-performance liquid chromatography-electrospray ionization/mass spectrometry (time of flight) method has been developed for the simultaneous determination of synthetic Fe(III)-chelates used as fertilizers. Analytes included the seven major Fe(III)-chelates used in agriculture, Fe(III)-EDTA, Fe(III)-DTPA, Fe(III)-HEDTA, Fe(III)-CDTA, Fe(III)-o,oEDDHA, Fe(III)-o,pEDDHA, and Fe(III)-EDDHMA, and the method was validated using isotope labeled (57)Fe(III)-chelates as internal standards. Calibration curves had R values in the range 0.9962-0.9997. Limits of detection and quantification were in the ranges 3-164 and 14-945 pmol, respectively. Analyte concentrations could be determined between the limits of quantification and 25 muM (racemic and meso Fe(III)-o,oEDDHA and Fe(III)-EDDHMA) or 50 muM (Fe(III)-EDTA, Fe(III)-HEDTA, Fe(III)-DTPA, Fe(III)-CDTA and Fe(III)-o,pEDDHA). The average intraday repeatability values were approximately 0.5 and 5% for retention time and peak area, respectively, whereas the interday repeatability values were approximately 0.7 and 8% for retention time and peak area, respectively. The method was validated using four different agricultural matrices, including nutrient solution, irrigation water, soil solution, and plant xylem exudates, spiked with Fe(III)-chelate standards and their stable isotope-labeled corresponding chelates. Analyte recoveries found were in the ranges 92-101% (nutrient solution), 89-102% (irrigation water), 82-100% (soil solution), and 70-111% (plant xylem exudates). Recoveries depended on the analyte, with Fe(III)-EDTA and Fe(III)-DTPA showing the lowest recoveries (average values of 87 and 88%, respectively, for all agricultural matrices used), whereas for other analytes recoveries were between 91 and 101%. The method was also used to determine the real concentrations of Fe(III)-chelates in commercial fertilizers. Furthermore, the method is also capable of resolving two more synthetic Fe(III)-chelates, Fe(III)-EDDHSA and Fe(III)-EDDCHA, whose exact quantification is not currently possible because of lack of commercial standards.


Asunto(s)
Cromatografía Líquida de Alta Presión , Ácido Edético/análisis , Compuestos Férricos/análisis , Fertilizantes/análisis , Quelantes del Hierro/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Agricultura , Ácido Edético/análogos & derivados , Ácido Edético/química , Etilenodiaminas/análisis , Etilenodiaminas/química , Compuestos Férricos/química , Ácido Pentético/análogos & derivados , Ácido Pentético/análisis , Ácido Pentético/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...