Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 33(3): 496-504, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35184558

RESUMEN

Bioluminescence (BL) imaging, which utilizes light emitted through the enzymatic reaction of luciferase oxidizing its substrate luciferin, enables sensitive and noninvasive monitoring of life phenomena. Herein, we developed a series of caged furimazine (FMZ) derivatives by introducing a protective group at the C-3 position and a hydroxy group at the C-6 phenyl ring to realize long-term live-cell BL imaging based on the NanoLuc (NLuc)/NanoKAZ (NKAZ)-FMZ system. The membrane permeability and cytotoxicity of the substrates were evaluated and related to their hydrophobicity. Among the series, the derivative with the bulkiest protective group (adamantanecarbonyl group) and a hydroxy substituent (named Ad-FMZ-OH) showed significantly prolonged and constant BL signal in cells expressing NLuc compared to the native FMZ substrate. This derivative enabled continuous BL imaging at the single-cell level for 24 h. Furthermore, we applied Ad-FMZ-OH to BL imaging of myocyte fusion and succeeded in the consecutive and sensitive monitoring at a single-cell level over a day. In summary, NLuc/NKAZ-caged FMZ derivatives have the potential to be applied to live-cell BL imaging of various life phenomena that require long-term observation.


Asunto(s)
Desarrollo de Músculos , Pirazinas , Furanos , Imidazoles , Luciferasas , Mediciones Luminiscentes/métodos
2.
Chembiochem ; 22(21): 3067-3074, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34402160

RESUMEN

Replacing an N,N-dimethylamino group in a classical fluorophore with a four membered azetidine ring provides an improved luminescence quantum yield. Herein, we extended this strategy to bioluminescent firefly luciferin analogues and evaluated its general validity. For this purpose, four types of luciferin cores were employed, and a total of eight analogues were evaluated. Among these analogues, unexpectedly, only the benzothiazole core analogue benefited from an azetidine substitution and showed enhanced bioluminescence. In addition, fluorescence measurements revealed that an azetidine substitution improved the fluorescence quantum yield by 2.3-times compared to a N,N-dimethylamino group. These findings clarify the differential effects of azetidine substituents in luciferins and present one possible strategy for enhancing photon output in benzothiazole type luciferins through a synthetic approach.


Asunto(s)
Azetidinas/química , Luciferina de Luciérnaga/química , Sustancias Luminiscentes/química , Luciferina de Luciérnaga/análogos & derivados , Mediciones Luminiscentes , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...