Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295454

RESUMEN

This paper presents an original design of a test apparatus for calorimetric measurements of arc efficiency η and melting efficiency ηm in welding processes. The construction and principle of operation of a new flow calorimeter are described, as well as the method for determining the η and ηm values in the process of the surface melting of aluminium-silicon alloy casting surfaces with a concentrated heat flux generated by the TIG (Tungsten Inert Gas) method. The results obtained indicate the advisability of using calorimetric testing to assess the arc efficiency of welding processes. It was demonstrated that changing the welding current and arc scanning speed, as well as changing the chemical composition of the silumin, has an effect on the arc efficiency value η. This has the effect of introducing a different amount of heat into the area of the heated material. The consequence of this is a change in the value of the melting efficiency ηm, which results in a change in the width and depth of the surface melting areas, through this, the cooling conditions of the material. As is well known, this will affect the microstructure of the welds and the width and microstructure of the heat-affected zone, and thus the performance of the welded joints.

2.
Materials (Basel) ; 13(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317033

RESUMEN

The paper concerns modeling the microstructure of a hypereutectic aluminum-silicon alloy developed by the authors with the purpose of application for automobile cylinder liners showing high resistance to abrasive wear at least equal to that of cast-iron liners. With the use of the nanoindentation method, material properties of intermetallic phases and matrix in a hypereutectic Al-Si alloy containing Mn, Cu, Cr, Ni, V, Fe, and Mg as additives were examined. The scanning electron microscope equipped with an adapter for chemical composition microanalysis was used to determine the chemical composition of intermetallics and of the alloy matrix. Intermetallic phases, such as Al(Fe,Mn,M)Si, Al(Cr,V,M)Si, AlFeSi, AlFeNiM, AlCuNi, Al2Cu, and Mg2Si, including those supersaturated with various alloying elements (M), were identified based on results of X-ray diffraction (XRD) tests and microanalysis of chemical composition carried out with the use of X-ray energy dispersive spectroscopy (EDS). Shapes of the phases included regular, irregular, or elongated polygons. On the disclosed intermetallic phases, silicon precipitations, the matrix, values of the indentation hardness (HIT), and the indentation modulus (EIT) were determined by performing nanoindentation tests with the use of a Nanoindentation Tester NHT (CSM Instruments) equipped with a Berkovich B-L 32 diamond indenter. The adopted maximum load value was 20 mN.

3.
Materials (Basel) ; 13(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570754

RESUMEN

The research reported in the paper concerned the conditions of cooling high-chromium cast iron with about 15% Cr content capable to ensure completeness of transformation of supercooled austenite into martensite in order to obtain high hardness value of the material and thus its high resistance to abrasive wear. For testing, castings were prepared with dimensions 120 mm × 100 mm × 15 mm cast in sand molds in which one of cavity surfaces was reproduced with chills. From the castings, specimens for dilatometric tests were taken with dimensions 4 mm × 4 mm × 16 mm and plates with dimensions 50 mm × 50 mm × 15 mm for heat treatment tests. The dilatometric specimens were cut out from areas subject to interaction with the chill. The austenitizing temperature and time were 1000 °C and 30 min, respectively. Dilatograms of specimens quenched in liquid nitrogen were used to determine martensite transformation start and finish temperatures TMs and TMf, whereas from dilatograms of specimens quenched in air and in water, only TMs was red out. To secure completeness of the course of transformation of supercooled austenite into martensite and reveal the transformation finish temperature, it was necessary to continue cooling of specimens in liquid nitrogen. It has been found that TMs depended strongly on the quenching method whereas TMf values were similar for each of the adopted cooling conditions. The examined cooling variants were used to develop a heat treatment process allowing to obtain hardness of 68 HRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...