Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccine ; 42(14): 3355-3364, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38631949

RESUMEN

To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy "protein mixture" (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra la COVID-19 , Proteínas HSP90 de Choque Térmico , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Humanos , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Proteínas HSP90 de Choque Térmico/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación
2.
Methods Mol Biol ; 2573: 235-248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040599

RESUMEN

One of the greatest barriers for the use of adeno-associated vectors (AAV) in gene therapy is the presence of pre-existing antibodies against AAV in the general population. Since many of the anti-AAV antibodies have the ability to neutralize the transduction target tissues, even patients with low antibody titers must be excluded from clinical trials or therapy. In recent years, various methods have been proposed to overcome this problem, unfortunately with limited success. In this chapter, we describe in detail a protocol for hemapheresis with an immunoadsorption matrix to remove specifically anti-AAV antibodies in an in vivo rat model. Furthermore, this chapter describes in detail the methods to determine the efficiency of hemapheresis and immunoadsorption.


Asunto(s)
Eliminación de Componentes Sanguíneos , Dependovirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Humanos , Ratas
3.
Front Cardiovasc Med ; 9: 862118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548416

RESUMEN

Cardiac cells depend on specific sarcolemmal ion transporters to assure the correct intracellular pH regulation. The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms. In the heart two different NBC isoforms have been described: the electroneutral NBCn1 (1Na+:1 HCO 3 - ) and the electrogenic NBCe1 (1Na+:2 HCO 3 - ). NBCe1 generates an anionic repolarizing current that modulates the action potential duration (APD). In addition to regulating the pH, the NBC is a source of sodium influx. It has been postulated that NBC could play a role in the development of hypertrophy. The aim of this research was to study the contribution of NBCe1 in heart electrophysiology and in the development of heart hypertrophy in an in vivo mouse model with overexpression of NBCe1. Heart NBCe1 overexpression was achieved by a recombinant cardiotropic adeno-associated virus (AAV9) and was evidenced by western-blot and qPCR. AAV9-mCherry was used as a transduction control. NBCe1 overexpression fails to increase heart growth. Patch clamp and electrocardiogram were performed. We observed a reduction on both, ventricular myocytes APD and electrocardiogram QT interval corrected by cardiac rate, emphasizing for the first time NBCe1 relevance for the electrical activity of the heart.

4.
Pflugers Arch ; 474(6): 625-636, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35235009

RESUMEN

Systolic Ca2+ transients are shaped by the concerted summation of Ca2+ sparks across cardiomyocytes. At high pacing rates, alterations of excitation-contraction coupling manifest as pro-arrhythmic Ca2+ alternans that can be classified as concordant or discordant. Discordance is ascribed to out-of-phase alternation of local Ca2+ release across the cell, although the triggers and consequences of this phenomenon remain unclear. Rat ventricular cardiomyocytes were paced at increasing rates. A discordance index (SD of local alternans ratios) was developed to quantify discordance in confocal recordings of Ca2+ transients. Index values were significantly increased by rapid pacing, and negatively correlated with Ca2+ transient amplitude change, indicating that discordance is an important contributor to the negative Ca2+ transient-frequency relationship. In addition, the largest local calcium transient in two consecutive transients was measured to build a potential "best release" profile, which quantitatively confirmed discordance-induced Ca2+ release impairment (DICRI). Diastolic Ca2+ homeostasis was also observed to be disrupted by discordance, as late Ca2+ release events elicited instability of resting Ca2+ levels. Finally, the effects of two RyR2 inhibitors (VK-II-86 and dantrolene) were tested. While both compounds inhibited Ca2+ wave generation, only VK-II-86 augmented subcellular discordance. Discordant Ca2+ release is a quantifiable phenomenon, sensitive to pacing frequency, and impairs both systolic and diastolic Ca2+ homeostasis. Interestingly, RyR2 inhibition can induce discordance, which should be considered when evaluating pharmacological RyR2 modulators for clinical use.


Asunto(s)
Bloqueadores de los Canales de Calcio , Señalización del Calcio , Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Acoplamiento Excitación-Contracción , Miocitos Cardíacos/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático
5.
Front Med (Lausanne) ; 8: 732095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35036407

RESUMEN

Adeno-associated virus (AAV) vectors are promising candidates for gene therapy. However, a number of recent preclinical large animal studies failed to translate into the clinic. This illustrates the formidable challenge of choosing the animal models that promise the best chance of a successful translation into the clinic. Several of the most common AAV serotypes use sialic acid (SIA) as their primary receptor. However, in contrast to most mammals, humans lack the enzyme CMAH, which hydroxylates cytidine monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) into cytidine monophosphate-N-glycolylneuraminic acid (CMP-Neu5Gc). As a result, human glycans only contain Neu5Ac and not Neu5Gc. Here, we investigate the tropism of AAV1, 5, 6 and 9 in wild-type C57BL/6J (WT) and CMAH knock-out (CMAH-/-) mice. All N-linked SIA-binding serotypes (AAV1, 5 and 6) showed significantly lower transduction of the heart in CMAH-/- when compared to WT mice (5-5.8-fold) and, strikingly, skeletal muscle transduction by AAV5 was almost 30-fold higher in CMAH-/- compared to WT mice. Importantly, the AAV tropism or distribution of expression among different organs was also affected. For AAV1, AAV5 and AAV6, expression in the heart compared to the liver was 4.6-8-fold higher in WT than in CMAH-/- mice, and for AAV5 the expression in the heart compared to the skeletal muscle was 57.3-fold higher in WT than in CMAH-/- mice. These data thus strongly suggest that the relative abundance of Neu5Ac and Neu5Gc plays a role in AAV tropism, and that results obtained in commonly used animal models might not translate into the clinic.

6.
Mol Ther Methods Clin Dev ; 16: 192-203, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32055647

RESUMEN

Gene therapy with adeno-associated virus (AAV)-based vectors shows great promise for the gene therapeutic treatment of a broad array of diseases. In fact, the treatment of genetic diseases with AAV vectors is currently the only in vivo gene therapy approach that is approved by the US Food and Drug Administration (FDA). Unfortunately, pre-existing antibodies against AAV severely limit the patient population that can potentially benefit from AAV gene therapy, especially if the vector is delivered by intravenous injection. Here, we demonstrate that we can selectively deplete anti-AAV antibodies by hemapheresis combined with AAV9 particles coupled to Sepharose beads. In rats that underwent hemapheresis and immunoadsorption, luciferase expression was dramatically increased in the hearts and fully restored in the livers of these rats. Importantly, our method can be readily adapted for the use in clinical AAV gene therapy.

7.
Life Sci ; 242: 117211, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891720

RESUMEN

Ventricular hypertrophy is a risk factors for arrhythmias, ischemia and sudden death. It involves cellular modifications leading to a pathological remodeling and is associated with heart failure. The activation of the G protein-coupled estrogen receptor (GPER) mediates beneficial actions in the cardiovascular system. Our goal was to prevent and regress the hypertrophy by the activation of GPER in neonatal cardiac myocytes (NRCM) and SHR male rats. Aldosterone increased the neonatal cardiomyocytes cell surface area after 48 h of incubation. The aldo-induced hypertrophy was blocked by the mineralocorticoid receptor (MR) inhibitor Eplererone or the reduction of MR expression by siRNA. The activation of GPER by the agonist G-1 totally prevented the increase surface area by Ald. The transfection of neonatal rat cardiac myocytes with a siRNA against GPER or the incubation with GPER blockers G-15 and G-36 inhibited the protection of G-1. The significant increase of cell surface area after 48 h of incubation with Ald was totally regressed in 24 h by the presence of G-1, indicating that the activation of GPER not only prevent the hypertrophy but also regress the hypertrophy when it is already established. In the in vivo model, G-1 or Vehicle was constantly infused via the minipump to SHR. The reduction of the hypertrophy by G-1 was evident by the cross-sectional area, BNP and ANP markers and by echocardiography. In this studied we demonstrated that the activation of GPER prevented and regressed the hypertrophy induced by Ald in NRCM and regressed hypertrophy in SHR rats.


Asunto(s)
Cardiomegalia/prevención & control , Receptores Acoplados a Proteínas G/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Cardiomegalia/diagnóstico por imagen , Células Cultivadas , Ciclopentanos/farmacología , Ecocardiografía , Eplerenona/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Quinolinas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/fisiología
8.
Pflugers Arch ; 472(1): 103-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31754830

RESUMEN

The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na+/HCO3- cotransporter (NBC) promotes the cellular co-influx of HCO3- and Na+. Since sAC activity is regulated by HCO3-, our purpose was to investigate the potential functional relationship between NBC and sAC in the cardiomyocyte. Rat ventricular myocytes were loaded with Fura-2, Fluo-3, or BCECF to measure Ca2+ transient (Ca2+i) by epifluorescence, Ca2+ sparks frequency (CaSF) by confocal microscopy, or intracellular pH (pHi) by epifluorescence, respectively. Sarcomere or cell shortening was measured with a video camera as an index of contractility. The NBC blocker S0859 (10 µM), the selective inhibitor of sAC KH7 (1 µM), and the PKA inhibitor H89 (0.1 µM) induced a negative inotropic effect which was associated with a decrease in Ca2+i. Since PKA increases Ca2+ release through sarcoplasmic reticulum RyR channels, CaSF was measured as an index of RyR open probability. The generation of CaSF was prevented by KH7. Finally, we investigated the potential role of sAC activation on NBC activity. NBC-mediated recovery from acidosis was faster in the presence of KH7 or H89, suggesting that the pathway sAC-PKA is negatively regulating NBC function, consistent with a negative feedback modulation of the HCO3- influx that activates sAC. In summary, the results demonstrated that the complex NBC-sAC-PKA plays a relevant role in Ca2+ handling and basal cardiac contractility.


Asunto(s)
Adenilil Ciclasas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Inhibidores de Adenilato Ciclasa/farmacología , Animales , Benzamidas/farmacología , Señalización del Calcio , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Ventrículos Cardíacos/citología , Isoquinolinas/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Simportadores de Sodio-Bicarbonato/antagonistas & inhibidores , Sulfonamidas/farmacología
9.
Cytotechnology ; 70(2): 651-664, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29143226

RESUMEN

Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.

10.
Pflugers Arch ; 469(2): 251-261, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28013412

RESUMEN

Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Canales Iónicos/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/metabolismo , Células Jurkat , NADPH Oxidasas/metabolismo , Protones , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/metabolismo , Zinc/farmacología
11.
Pflugers Arch ; 468(11-12): 1945-1955, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27757582

RESUMEN

Cardiac arrhythmias are associated with raised intracellular [Ca2+] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca2+-dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca2+-dependent phosphatase, calcineurin. Intracellular [Ca2+] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2.Raised [Ca2+]i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca2+]i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca2+-independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca2+]i. PP2A had no role. Conduction velocity was reduced by raised [Ca2+]i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca2+] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.


Asunto(s)
Potenciales de Acción , Calcineurina/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Uniones Comunicantes/fisiología , Cobayas , Miocitos Cardíacos/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional
12.
Channels (Austin) ; 10(5): 428-434, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27249584

RESUMEN

The sodium/bicarbonate cotransporter (NBC) transports extracellular Na+ and HCO3- into the cytoplasm upon intracellular acidosis, restoring the acidic pHi to near neutral values. Two different NBC isoforms have been described in the heart, the electroneutral NBCn1 (1Na+:1HCO3-) and the electrogenic NBCe1 (1Na+:2HCO3-). Certain non-genomic effects of aldosterone (Ald) were due to an orphan G protein-couple receptor 30 (GPR30). We have recently demonstrated that Ald activates GPR30 in adult rat ventricular myocytes, which transactivates the epidermal growth factor receptor (EGFR) and in turn triggers a reactive oxygen species (ROS)- and PI3K/AKT-dependent pathway, leading to the stimulation of NBC. The aim of this study was to investigate the NBC isoform involved in the Ald/GPR30-induced NBC activation. Using specific NBCe1 inhibitory antibodies (a-L3) we demonstrated that Ald does not affect NBCn1 activity. Ald was able to increase NBCe1 activity recorded in isolation. Using immunofluorescence and confocal microscopy analysis we showed in this work that both NBCe1 and GPR30 are localized in t-tubules. In conclusion, we have demonstrated that NBCe1 is the NBC isoform activated by Ald in the heart.


Asunto(s)
Aldosterona/fisiología , Miocitos Cardíacos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Simportadores de Sodio-Bicarbonato/fisiología , Animales , Masculino , Ratas
13.
J Mol Cell Cardiol ; 89(Pt B): 260-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26497404

RESUMEN

Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.


Asunto(s)
Aldosterona/farmacología , Miocardio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Masculino , Modelos Biológicos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de Mineralocorticoides/metabolismo , Activación Transcripcional/efectos de los fármacos
14.
Cardiovasc Pathol ; 23(4): 224-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24721237

RESUMEN

BACKGROUND: Although the participation of the electrogenic sodium/bicarbonate cotransporter (NBCe1) in the recovery from an intracellular acid load is recognized, its role in ischemia-reperfusion is still unclear. METHODS AND RESULTS: Our objective was to assess the role of NBCe1 in reperfusion injury. We use selective functional antibodies against extracellular loop 3 (a-L3) and loop 4 (a-L4) of NBCe1. a-L3 inhibits and a-L4 stimulates NBCe1 activity. Isolated rat hearts were submitted to 40 min of coronary occlusion and 1 h of reperfusion. a-L3, a-L4 or S0859--selective Na(+)-HCO3(-) co-transport inhibitor--were administered during the initial 10 min of reperfusion. The infarct size (IS) was measured by triphenyltetrazolium chloride staining technique. Postischemic systolic and diastolic functions were also assessed. a-L3 and S0859 treatments decreased significantly (P < .05) the IS (16 ± 3% for a-L3 vs. 32 ± 5% in hearts treated with control nonimmune serum and 19 ± 3% for S0859 vs. 39 ± 2% in untreated hearts). Myocardial function during reperfusion improved after a-L3 treatment, but it was not modified by S0859. The infusion of a-L4 did not modify neither the IS nor myocardial function. CONCLUSIONS: The NBCe1 hyperactivity during reperfusion leads to Na(+) and Ca(2+) loading, conducing to Ca(2+) overload and myocardial damage. Consistently, we have shown herein that the selective NBCe1 blockade with a-L3 exerted cardioprotection. This beneficial action strongly suggests that NBCe1 could be a potential target for the treatment of coronary disease.


Asunto(s)
Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Benzamidas/farmacología , Cardiotónicos/farmacología , Contracción Miocárdica , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Wistar , Simportadores de Sodio-Bicarbonato/agonistas , Simportadores de Sodio-Bicarbonato/antagonistas & inhibidores , Sulfonamidas/farmacología , Función Ventricular Izquierda
15.
Cell Physiol Biochem ; 33(4): 982-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24714077

RESUMEN

BACKGROUND: Bicarbonate transport has crucial roles in regulating intracellular pH (pHi) in a variety of cells. The purpose of this study was to evaluate its participation in the regulation of pHi in resting and stimulated human neutrophils. METHODS: Freshly isolated human neutrophils acidified by an ammonium prepulse were used in this study. RESULTS: We demonstrated that resting neutrophils have a bicarbonate transport mechanism that prevents acidification when the Na(+)/H(+) exchanger is blocked by EIPA. Neutrophils acidified by an ammonium prepulse showed an EIPA-resistant recovery of pHi that was inhibited by the blocker of the anionic transporters SITS or the Na(+)/HCO3(-) cotransporter (NBC) selective inhibitor S0859, and abolished when sodium was removed from the extracellular medium. In western blot and RT-PCR analysis the expression of NBCe2 but not NBCe1 or NBCn1 was detected in neutrophils Acidified neutrophils increased the EIPA-insensitive pHi recovery rate when its activity was stimulated with fMLF/ cytochalasin B. This increase in the removal of acid equivalents was insensitive to the blockade of the NADPH oxidase with DPI. CONCLUSION: It is concluded that neutrophils have an NBC that regulates basal pHi and is modulated by chemotactic agents.


Asunto(s)
Neutrófilos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/farmacología , Amilorida/análogos & derivados , Amilorida/farmacología , Cloruro de Amonio/farmacología , Benzamidas/farmacología , Bicarbonatos/farmacología , Citocalasina B/farmacología , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de los fármacos , N-Formilmetionina Leucil-Fenilalanina/farmacología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Neutrófilos/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Simportadores de Sodio-Bicarbonato/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sulfonamidas/farmacología
16.
Cardiovasc Res ; 101(2): 211-9, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24253522

RESUMEN

AIMS: Electroneutral (NBCn1) and electrogenic (NBCe1) isoforms of the Na(+)-HCO3(-) cotransporter (NBC) coexist in the heart. We studied the expression and function of these isoforms in hearts of Wistar and spontaneously hypertensive rats (SHR), elucidating the direct implication of the renin-angiotensin system in the NBC regulation. METHODS AND RESULTS: We used myocytes from Wistar, SHR, losartan-treated SHR (Los-SHR), and Angiotensin II (Ang II)-induced cardiac hypertrophy. We found an overexpression of NBCe1 and NBCn1 proteins in SHR that was prevented in Los-SHR. Hyperkalaemic-induced pHi alkalization was used to study selective activation of NBCe1. Despite the increase in NBCe1 expression, its activity was lower in SHR than in Wistar or Los-SHR. Similar results were found in Ang II-induced hypertrophy. A specific inhibitory antibody against NBCe1 allowed the discrimination between NBCe1 and NBCn1 activity. Whereas in SHR most of the pHi recovery was due to NBCn1 stimulation, in Wistar and Los-SHR the activity of both isoforms was equitable, suggesting that the deteriorated cardiac NBCe1 function observed in SHR is compensated by an enhanced activity of NBCn1. Using the biotin method, we observed greater level of internalized NBCe1 protein in SHR than in the non-hypertophic groups, while with immunofluorescence we localized the protein in endosomes near the nucleus only in SHR. CONCLUSIONS: We conclude that Ang II is responsible for the impairment of the NBCe1 in hypertrophied hearts. This is due to retained transporter protein units in early endosomes. Moreover, NBCn1 activity seems to be increased in the hypertrophic myocardium of SHR, compensating impaired function of NBCe1.


Asunto(s)
Bicarbonatos/metabolismo , Cardiomegalia/metabolismo , Hipertensión/metabolismo , Miocitos Cardíacos/metabolismo , Sistema Renina-Angiotensina , Sarcolema/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Compuestos de Amonio/metabolismo , Angiotensina II , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Antihipertensivos/farmacología , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Hiperpotasemia/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/patología , Losartán/farmacología , Masculino , Miocitos Cardíacos/patología , Potasio/metabolismo , Transporte de Proteínas , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Sistema Renina-Angiotensina/efectos de los fármacos , Sarcolema/patología , Factores de Tiempo
17.
Cardiol J ; 21(1): 53-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23990177

RESUMEN

BACKGROUND: The aim of this study was to evaluate gender-associated impact on left ventricular mass (LVM) and on left ventricular function (LVF) in humans and rats with aging. METHODS: Myocyte area and collagen volume fraction (CVF) were studied in rats. LVM and LVF were evaluated in animals and humans by echocardiography and LVM index (LVMI) was obtained. RESULTS: LVMI, myocyte area and CVF were similar in males and females of 1-month-old rats. LVMI in children was similar in both genders. In contrast, in 6-month-old rats (5 males and 5 females), LVMI (17.7 ± 0.7 mg/mm vs. 10.1 ± 0.2 mg/mm; p < 0.01), and myocyte area (4572.5 ± 72.6 µm² vs. 3293.85 ± 57.8 µm², p < 0.01) were higher in male animals without differences in CVF. Men (n = 25) exhibited greater LVMI than women (n = 25) (77.4 ± 3.2 g/m² vs. 63.3 ± 1.8 g/m², p < 0.01), whereas the LVF was higher in women (105.9 ± 2.9% vs. 95.3 ± 3.5%, p < 0.01). CONCLUSIONS: There is a clear gender-associated impact on LVM with aging in humans and rats. Similar CVF and LVF associated to greater myocyte size and LVM in male rats suggest a process of physiological response. However, the increase in cardiac mass without an associated improved cardiac function in men in comparison to women could likely represent a potential disadvantage in the adaptive response during growth.


Asunto(s)
Ventrículos Cardíacos/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Función Ventricular Izquierda/fisiología , Adolescente , Adulto , Animales , Niño , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratas , Ratas Wistar , Factores Sexuales , Adulto Joven
18.
Am J Physiol Renal Physiol ; 305(12): F1765-74, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24005470

RESUMEN

The NBCn1 Na(+)/HCO3(-) cotransporter catalyzes the electroneutral movement of 1 Na(+):1 HCO3(-) into kidney cells. We characterized the intracellular pH (pHi) regulation in human embryonic kidney cells (HEK) subjected to NH4Cl prepulse acid loading, and we examined the NBCn1 expression and function in HEK cells subjected to 24-h elevated Pco2 (10-15%). After acid loading, in the presence of HCO3(-), ∼50% of the pHi recovery phase was blocked by the Na(+)/H(+) exchanger inhibitors EIPA (10-50 µM) and amiloride (1 mM) and was fully cancelled by 30 µM EIPA under nominally HCO3(-)-free conditions. In addition, in the presence of HCO3(-), pHi recovery after acid loading was completely blocked when Na(+) was omitted in the buffer. pHi recovery after acidification in HEK cells was repeated in the presence of the NBC inhibitor S0859, and the pHi recovery was inhibited by S0859 in a dose-dependent manner (Ki = 30 µM, full inhibition at 60 µM), which confirmed NBC Na(+)/HCO3(-) cotransporter activation. NBCn1 expression increased threefold after 24-h exposure of cultured HEK cells to 10% CO2 and sevenfold after exposure to 15% CO2, examined by immunoblots. Finally, exposure of HEK cells to high CO2 significantly increased the HCO3(-)-dependent recovery of pHi after acid loading. We conclude that HEK cells expressed the NBCn1 Na(+)/HCO3(-) cotransporter as the only HCO3(-)-dependent mechanism responsible for cellular alkaline loading. NBCn1, which expresses in different kidney cell types, was upregulated by 24-h high-Pco2 exposure of HEK cells, and this upregulation was accompanied by increased NBCn1-mediated HCO3(-) transport.


Asunto(s)
Dióxido de Carbono/farmacología , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Amilorida/análogos & derivados , Amilorida/farmacología , Bicarbonatos/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293/citología , Humanos , Concentración de Iones de Hidrógeno , Factores de Tiempo
19.
Front Physiol ; 4: 411, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24478712

RESUMEN

The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms in the cardiomyocytes. It has been demonstrated the existence of at least two functional isoforms, one that promotes the co-influx of 1 molecule of Na(+) per 1 molecule of HCO(-) 3 (electroneutral isoform; NBCn1) and the other one that generates the co-influx of 1 molecule of Na(+) per 2 molecules of HCO(-) 3 (electrogenic isoform; NBCe1). Both isoforms are important to maintain intracellular pH (pH i ) and sodium concentration ([Na(+)] i ). In addition, NBCe1 generates an anionic repolarizing current that modulates the action potential duration (APD). The renin-angiotensin-aldosterone system (RAAS) is implicated in the modulation of almost all physiological cardiac functions and is also involved in the development and progression of cardiac diseases. It was reported that angiotensin II (Ang II) exhibits an opposite effect on NBC isoforms: it activates NBCn1 and inhibits NBCe1. The activation of NBCn1 leads to an increase in pH i and [Na(+)] i , which indirectly, due to the stimulation of reverse mode of the Na(+)/Ca(2+) exchanger (NCX), conduces to an increase in the intracellular Ca(2+) concentration. On the other hand, the inhibition of NBCe1 generates an APD prolongation, potentially representing a risk of arrhythmias. In the last years, the potentially altered NBC function in pathological scenarios, as cardiac hypertrophy and ischemia-reperfusion, has raised increasing interest among investigators. This review attempts to draw the attention on the relevant regulation of NBC activity by RAAS, since it modulates pH i and [Na(+)] i , which are involved in the development of cardiac hypertrophy, the damage produced by ischemia-reperfusion and the generation of arrhythmic events, suggesting a potential role of NBC in cardiac diseases.

20.
Am J Physiol Cell Physiol ; 303(1): C69-80, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22538240

RESUMEN

Na(+)/HCO(3)(-) cotransporter (NBC)e1 catalyze the electrogenic movement of 1 Na(+):2 HCO(3)(-) into cardiomyocytes cytosol. NBC proteins associate with carbonic anhydrases (CA), CAII, and CAIV, forming a HCO(3)(-) transport metabolon. Herein, we examined the physical/functional interaction of NBCe1 and transmembrane CAIX in cardiac muscle. NBCe1 and CAIX physical association was examined by coimmunoprecipitation, using rat ventricular lysates. NBCe1 coimmunoprecipitated with anti-CAIX antibody, indicating NBCe1 and CAIX interaction in the myocardium. Glutathione-S-transferase (GST) pull-down assays with predicted extracellular loops (EC) of NBCe1 revealed that NBCe1-EC4 mediated interaction with CAIX. Functional NBCe1/CAIX interaction was examined using fluorescence measurements of BCECF in rat cardiomyocytes to monitor cytosolic pH. NBCe1 transport activity was evaluated after membrane depolarization with high extracellular K(+) in the presence or absence of the CA inhibitors, benzolamide (BZ; 100 µM) or 6-ethoxyzolamide (ETZ; 100 µM) (*P < 0.05). This depolarization protocol produced an intracellular pH (pH(i)) increase of 0.17 ± 0.01 (n = 11), which was inhibited by BZ (0.11 ± 0.02; n = 7) or ETZ (0.06 ± 0.01; n = 6). NBCe1 activity was also measured by changes of pH(i) in NBCe1-transfected human embryonic kidney 293 cells subjected to acid loads. Cotransfection of CAIX with NBCe1 increased the rate of pH(i) recovery (in mM/min) by about fourfold (12.1 ± 0.8; n = 9) compared with cells expressing NBCe1 alone (3.1 ± 0.5; n = 7), which was inhibited by BZ (7.5 ± 0.3; n = 9). We demonstrated that CAIX forms a complex with EC4 of NBCe1, which activates NBCe1-mediated HCO(3)(-) influx in the myocardium. CAIX and NBCe1 have been linked to tumorigenesis and cardiac cell growth, respectively. Thus inhibition of CA activity might be useful to prevent activation of NBCe1 under these pathological conditions.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Miocardio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Bicarbonatos/metabolismo , Transporte Biológico Activo , Anhidrasa Carbónica IX , Línea Celular , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratas , Simportadores de Sodio-Bicarbonato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...