Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Neonatal Screen ; 10(1)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38390974

RESUMEN

Krabbe disease (KD) is part of newborn screening (NBS) in 11 states with at least one additional state preparing to screen. In July 2021, KD was re-nominated for addition to the federal Recommended Uniform Screening Panel (RUSP) in the USA with a two-tiered strategy based on psychosine (PSY) as the determinant if an NBS result is positive or negative after a first-tier test revealed decreased galactocerebrosidase activity. Nine states currently screening for KD include PSY analysis in their screening strategy. However, the nomination was rejected in February 2023 because of perceived concerns about a high false positive rate, potential harm to newborns with an uncertain prognosis, and inadequate data on presymptomatic treatment benefit or harm. To address the concern about false positive NBS results, a survey was conducted of the eight NBS programs that use PSY and have been screening for KD for at least 1 year. Seven of eight states responded. We found that: (1) the use of PSY is variable; (2) when modeling the data based on the recommended screening strategy for KD, and applying different cutoffs for PSY, each state could virtually eliminate false positive results without major impact on sensitivity; (3) the reason for the diverse strategies appears to be primarily the difficulty of state programs to adjust screening algorithms due to the concern of possibly missing even an adult-onset case following a change that focuses on infantile and early infantile KD. Contracts with outside vendors and the effort/cost of making changes to a program's information systems can be additional obstacles. We recommend that programs review their historical NBS outcomes for KD with their advisory committees and make transparent decisions on whether to accept false positive results for such a devastating condition or to adjust their procedures to ensure an efficient, effective, and manageable NBS program for KD.

2.
Mol Genet Metab Rep ; 38: 101037, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38173711

RESUMEN

The increasing availability of novel therapies highlights the importance of screening newborns for rare genetic disorders so that they may benefit from early therapy, when it is most likely to be effective. Pilot newborn screening (NBS) studies are a way to gather objective evidence about the feasibility and utility of screening, the accuracy of screening assays, and the incidence of disease. They are also an optimal way to evaluate the complex ethical, legal and social implications (ELSI) that accompany NBS expansion for disorders. ScreenPlus is a consented pilot NBS program that aims to enroll over 100,000 infants across New York City. The initial ScreenPlus panel includes 14 disorders and uses an analyte-based, multi-tiered screening platform in an effort to enhance screening accuracy. Infants who receive an abnormal result are referred to a ScreenPlus provider for confirmatory testing, management, and therapy as needed, along with longitudinal capture of outcome data. Participation in ScreenPlus requires parental consent, which is obtained in active and passive manners. Patient-facing documents are translated into the ten most common languages spoken at our nine pilot hospitals, all of which serve diverse communities. At the time of consent, parents are invited to receive a series of online surveys to capture their opinions about specific ELSI-related topics, such as NBS policy, residual dried blood spot retention, and the types of disorders that should be on NBS panels. ScreenPlus has developed a stakeholder-based, collective funding model that includes federal support in addition to funding from 14 advocacy and industry sponsors, all of which have a particular interest in NBS for at least one of the ScreenPlus disorders. Taken together, ScreenPlus is a model, multi-sponsored pilot NBS program that will provide critical data about NBS for a broad panel of disorders, while gathering key stakeholder opinions to help guide ethically sensitive decision-making about NBS expansion.

3.
Mol Genet Metab ; 140(1-2): 107678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574344

RESUMEN

The advancements in population screening, including newborn screening, enables the identification of disease-causing variants and timely initiation of treatment. However, screening may also identify mild variants, non-disease variants, and variants of uncertain significance (VUS). The identification of a VUS poses a challenge in terms of diagnostic uncertainty and confusion. X-linked adrenoleukodystrophy (ALD) serves as an illustrative example of this complex issue. ALD is a monogenic neurometabolic disease with a complex clinical presentation and a lack of predictive tests for clinical severity. Despite the success of ALD newborn screening, a significant proportion (62%) of missense variants identified through newborn screening exhibit uncertainty regarding their pathogenicity. Resolving this issue requires ongoing efforts to accurately classify variants and refine screening protocols. While it is undisputable that ALD newborn screening greatly benefits boys with the disease, the identification of VUS underscores the need for continuous research and collaboration in improving screening practices.


Asunto(s)
Adrenoleucodistrofia , Masculino , Recién Nacido , Humanos , Adrenoleucodistrofia/diagnóstico , Tamizaje Neonatal/métodos , Mutación Missense
4.
Am J Med Genet C Semin Med Genet ; 193(1): 44-55, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36876995

RESUMEN

This paper focuses on the question of, "When is the best time to identify an individual at risk for a treatable genetic condition?" In this review, we describe a framework for considering the optimal timing for pursuing genetic and genomic screening for treatable genetic conditions incorporating a lifespan approach. Utilizing the concept of a carousel that represents the four broad time periods when critical decisions might be made around genetic diagnoses during a person's lifetime, we describe genetic testing during the prenatal period, the newborn period, childhood, and adulthood. For each of these periods, we describe the objectives of genetic testing, the current status of screening or testing, the near-term vision for the future of genomic testing, the advantages and disadvantages of each approach, and the feasibility and ethical considerations of testing and treating. The notion of a "Genomics Passbook" is one where an early genomic screening evaluation could be performed on each individual through a public health program, with that data ultimately serving as a "living document" that could be queried and/or reanalyzed at prescribed times during the lifetime of that person, or in response to concerns about symptoms of a genetic disorder in that individual.


Asunto(s)
Pruebas Genéticas , Longevidad , Recién Nacido , Humanos , Niño
5.
Am J Med Genet C Semin Med Genet ; 193(1): 30-43, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738469

RESUMEN

Most rare diseases are caused by single-gene mutations, and as such, lend themselves to a host of new gene-targeted therapies and technologies including antisense oligonucleotides, phosphomorpholinos, small interfering RNAs, and a variety of gene delivery and gene editing systems. Early successes are encouraging, however, given the substantial number of distinct rare diseases, the ability to scale these successes will be unsustainable without new development efficiencies. Herein, we discuss the need for genomic newborn screening to match pace with the growing development of targeted therapeutics and ability to rapidly develop individualized therapies for rare variants. We offer approaches to move beyond conventional "one disease at a time" preclinical and clinical drug development and discuss planned regulatory innovations that are necessary to speed therapy delivery to individuals in need. These proposals leverage the shared properties of platform classes of therapeutics and innovative trial designs including master and platform protocols to better serve patients and accelerate drug development. Ultimately, there are risks to these novel approaches; however, we believe that close partnership and transparency between health authorities, patients, researchers, and drug developers present the path forward to overcome these challenges and deliver on the promise of gene-targeted therapies for rare diseases.


Asunto(s)
Edición Génica , Enfermedades Raras , Recién Nacido , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Enfermedades Raras/terapia , Terapia Genética/métodos , Genómica
6.
Front Genet ; 13: 867337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938011

RESUMEN

Each year, through population-based newborn screening (NBS), 1 in 294 newborns is identified with a condition leading to early treatment and, in some cases, life-saving interventions. Rapid advancements in genomic technologies to screen, diagnose, and treat newborns promise to significantly expand the number of diseases and individuals impacted by NBS. However, expansion of NBS occurs slowly in the United States (US) and almost always occurs condition by condition and state by state with the goal of screening for all conditions on a federally recommended uniform panel. The Newborn Screening Translational Research Network (NBSTRN) conducted the NBS Expansion Study to describe current practices, identify expansion challenges, outline areas for improvement in NBS, and suggest how models could be used to evaluate changes and improvements. The NBS Expansion Study included a workshop of experts, a survey of clinicians, an analysis of data from online repositories of state NBS programs, reports and publications of completed pilots, federal committee reports, and proceedings, and the development of models to address the study findings. This manuscript (Part One) reports on the design, execution, and results of the NBS Expansion Study. The Study found that the capacity to expand NBS is variable across the US and that nationwide adoption of a new condition averages 9.5 years. Four factors that delay and/or complicate NBS expansion were identified. A companion paper (Part Two) presents a use case for each of the four factors and highlights how modeling could address these challenges to NBS expansion.

8.
Int J Neonatal Screen ; 7(2)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071213

RESUMEN

Krabbe disease (KD) is a rare inherited neurodegenerative disorder caused by a deficiency in galactocerebrosidase enzyme activity, which can present in early infancy, requiring an urgent referral for hematopoietic stem cell transplantation, or later in life. Newborn screening (NBS) for KD requires identification and risk-stratification of patients based on laboratory values to predict disease onset in early infancy or later in life. The biomarker psychosine plays a key role in NBS algorithms to ascertain probability of early-onset disease. This report describes a patient who was screened positive for KD in New York State, had a likely pathogenic genotype, and showed markedly reduced enzyme activity but surprisingly low psychosine levels. The patient ultimately developed KD in late infancy, an outcome not clearly predicted by existing NBS algorithms. It remains critical that psychosine levels be evaluated alongside genotype, enzyme activity levels, and the patient's evolving clinical presentation, ideally in consultation with experts in KD, in order to guide diagnosis and plans for monitoring.

9.
Neurosci Lett ; 760: 136080, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34166724

RESUMEN

The goal of newborn screening is to enhance the outcome of individuals with serious, treatable disorders through early, pre-symptomatic detection. The lysosomal storage disorders (LSDs) comprise a group of more than 50 diseases with a combined frequency of approximately 1:7000. With the availability of existing and new enzyme replacement therapies, small molecule treatments and gene therapies, there is increasing interest in screening newborns for LSDs with the goal of reducing disease-related morbidity and mortality through early detection. Novel screening methods are being developed, including efforts to enhance accuracy of screening using an array of multi-tiered, genomic, statistical, and bioinformatic approaches. While NBS data for Gaucher disease, Fabry disease, Krabbe disease, MPS I, and Pompe disease has demonstrated the feasibility of widespread screening, it has also highlighted some of the complexities of screening for LSDs. These include the identification of infants with later-onset, untreatable, and uncertain phenotypes, raising interesting ethical concerns that should be addressed as part of the NBS implementation process. Taken together, these efforts will provide critical, detailed data to help guide objective, ethically sensitive decision-making about NBS for LSDs.


Asunto(s)
Implementación de Plan de Salud/organización & administración , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Tamizaje Neonatal/tendencias , Edad de Inicio , Toma de Decisiones en la Organización , Ética Médica , Predicción , Implementación de Plan de Salud/ética , Humanos , Incidencia , Recién Nacido , Enfermedades por Almacenamiento Lisosomal/epidemiología , Enfermedades por Almacenamiento Lisosomal/terapia , Tamizaje Neonatal/ética , Tamizaje Neonatal/organización & administración , Resultado del Tratamiento
10.
Mol Genet Metab ; 134(1-2): 53-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33832819

RESUMEN

OBJECTIVE: To provide updated evidence and consensus-based recommendations for the classification of individuals who screen positive for Krabbe Disease (KD) and recommendations for long-term follow-up for those who are at risk for late onset Krabbe Disease (LOKD). METHODS: KD experts (KD NBS Council) met between July 2017 and June 2020 to develop consensus-based classification and follow-up recommendations. The resulting newly proposed recommendations were assessed in a historical cohort of 47 newborns from New York State who were originally classified at moderate or high risk for LOKD. RESULTS: Infants identified by newborn screening with possible KD should enter one of three clinical follow-up pathways (Early infantile KD, at-risk for LOKD, or unaffected), based on galactocerebrosidase (GALC) activity, psychosine concentration, and GALC genotype. Patients considered at-risk for LOKD based on low GALC activity and an intermediate psychosine concentration are further split into a high-risk or low-risk follow-up pathway based on genotype. Review of the historical New York State cohort found that the updated follow-up recommendations would reduce follow up testing by 88%. CONCLUSION: The KD NBS Council has presented updated consensus recommendations for efficient and effective classification and follow-up of NBS positive patients with a focus on long-term follow-up of those at-risk for LOKD.


Asunto(s)
Consenso , Genotipo , Leucodistrofia de Células Globoides/clasificación , Leucodistrofia de Células Globoides/genética , Tamizaje Neonatal/métodos , Guías de Práctica Clínica como Asunto , Pruebas con Sangre Seca , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Enfermedades de Inicio Tardío/diagnóstico , Enfermedades de Inicio Tardío/etiología , Enfermedades de Inicio Tardío/genética , Leucodistrofia de Células Globoides/diagnóstico , Factores de Riesgo
11.
Int J Neonatal Screen ; 7(2)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922835

RESUMEN

Newborn screening for congenital hypothyroidism remains challenging decades after broad implementation worldwide. Testing protocols are not uniform in terms of targets (TSH and/or T4) and protocols (parallel vs. sequential testing; one or two specimen collection times), and specificity (with or without collection of a second specimen) is overall poor. The purpose of this retrospective study is to investigate the potential impact of multivariate pattern recognition software (CLIR) to improve the post-analytical interpretation of screening results. Seven programs contributed reference data (N = 1,970,536) and two sets of true (TP, N = 1369 combined) and false (FP, N = 15,201) positive cases for validation and verification purposes, respectively. Data were adjusted for age at collection, birth weight, and location using polynomial regression models of the fifth degree to create three-dimensional regression surfaces. Customized Single Condition Tools and Dual Scatter Plots were created using CLIR to optimize the differential diagnosis between TP and FP cases in the validation set. Verification testing correctly identified 446/454 (98%) of the TP cases, and could have prevented 1931/5447 (35%) of the FP cases, with variable impact among locations (range 4% to 50%). CLIR tools either as made here or preferably standardized to the recommended uniform screening panel could improve performance of newborn screening for congenital hypothyroidism.

12.
J Inherit Metab Dis ; 44(3): 728-739, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33373467

RESUMEN

BACKGROUND: Among boys with X-Linked adrenoleukodystrophy, a subset will develop childhood cerebral adrenoleukodystrophy (CCALD). CCALD is typically lethal without hematopoietic stem cell transplant before or soon after symptom onset. We sought to establish evidence-based guidelines detailing the neuroimaging surveillance of boys with neurologically asymptomatic adrenoleukodystrophy. METHODS: To establish the most frequent age and diagnostic neuroimaging modality for CCALD, we completed a meta-analysis of relevant studies published between January 1, 1970 and September 10, 2019. We used the consensus development conference method to incorporate the resulting data into guidelines to inform the timing and techniques for neuroimaging surveillance. Final guideline agreement was defined as >80% consensus. RESULTS: One hundred twenty-three studies met inclusion criteria yielding 1285 patients. The overall mean age of CCALD diagnosis is 7.91 years old. The median age of CCALD diagnosis calculated from individual patient data is 7.0 years old (IQR: 6.0-9.5, n = 349). Ninety percent of patients were diagnosed between 3 and 12. Conventional MRI was most frequently reported, comprised most often of T2-weighted and contrast-enhanced T1-weighted MRI. The expert panel achieved 95.7% consensus on the following surveillance parameters: (a) Obtain an MRI between 12 and 18 months old. (b) Obtain a second MRI 1 year after baseline. (c) Between 3 and 12 years old, obtain a contrast-enhanced MRI every 6 months. (d) After 12 years, obtain an annual MRI. CONCLUSION: Boys with adrenoleukodystrophy identified early in life should be monitored with serial brain MRIs during the period of highest risk for conversion to CCALD.


Asunto(s)
Adrenoleucodistrofia/diagnóstico , Imagen por Resonancia Magnética , Niño , Preescolar , Conferencias de Consenso como Asunto , Humanos , Lactante , Recién Nacido , Masculino , Tamizaje Neonatal/métodos
13.
Int J Neonatal Screen ; 6(3)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-33239591

RESUMEN

New York uses a two-tier assay to screen newborns for Krabbe disease and Pompe disease. Individual enzyme activities are measured in the first-tier, and specimens from newborns with low activity are reflexed to second tier Sanger sequencing of the associated gene. Using only this two-tiered approach, the screen positive and false positive rates were high. In this study, we added an additional step that examines the activity of four additional lysosomal enzymes. Results for all enzymes are integrated using the multivariate pattern recognition software called Collaborative Laboratory Integrated Reports (CLIR) to assess the risk for disease. Results after one year of screening using the new algorithm are compared to the prior year of screening without consideration of the additional enzymes and use of CLIR. With CLIR the number of babies referred for Krabbe disease was reduced by almost 80% (from 48 to 10) and the number of babies referred for Pompe disease was reduced by almost 32% (22 to 15).

14.
Genet Med ; 22(6): 1108-1118, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32089546

RESUMEN

PURPOSE: Newborn screening (NBS) for Krabbe disease (KD) is performed by measurement of galactocerebrosidase (GALC) activity as the primary test. This revealed that GALC activity has poor specificity for KD. Psychosine (PSY) was proposed as a disease marker useful to reduce the false positive rate for NBS and for disease monitoring. We report a highly sensitive PSY assay that allows identification of KD patients with minimal PSY elevations. METHODS: PSY was extracted from dried blood spots or erythrocytes with methanol containing d5-PSY as internal standard, and measured by liquid chromatography-tandem mass spectrometry. RESULTS: Analysis of PSY in samples from controls (N = 209), GALC pseudodeficiency carriers (N = 55), GALC pathogenic variant carriers (N = 27), patients with infantile KD (N = 26), and patients with late-onset KD (N = 11) allowed for the development of an effective laboratory screening and diagnostic algorithm. Additional longitudinal measurements were used to track therapeutic efficacy of hematopoietic stem cell transplantion (HSCT). CONCLUSION: This study supports PSY quantitation as a critical component of NBS for KD. It helps to differentiate infantile from later onset KD variants, as well as from GALC variant and pseudodeficiency carriers. Additionally, this study provides further data that PSY measurement can be useful to monitor KD progression before and after treatment.


Asunto(s)
Leucodistrofia de Células Globoides , Psicosina , Pruebas con Sangre Seca , Galactosilceramidasa/genética , Humanos , Recién Nacido , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Tamizaje Neonatal
16.
Genet Med ; 21(3): 631-640, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30093709

RESUMEN

PURPOSE: We conducted a consented pilot newborn screening (NBS) for Pompe, Gaucher, Niemann-Pick A/B, Fabry, and MPS 1 to assess the suitability of these lysosomal storage disorders (LSDs) for public health mandated screening. METHODS: At five participating high-birth rate, ethnically diverse New York City hospitals, recruiters discussed the study with postpartum parents and documented verbal consent. Screening on consented samples was performed using multiplexed tandem mass spectrometry. Screen-positive infants underwent confirmatory enzymology, DNA testing, and biomarker quantitation when available. Affected infants are being followed for clinical management and long-term outcome. RESULTS: Over 4 years, 65,605 infants participated, representing an overall consent rate of 73%. Sixty-nine infants were screen-positive. Twenty-three were confirmed true positives, all of whom were predicted to have late-onset phenotypes. Six of the 69 currently have undetermined disease status. CONCLUSION: Our results suggest that NBS for LSDs is much more likely to detect individuals at risk for late-onset disease, similar to results from other NBS programs. This work has demonstrated the feasibility of using a novel consented pilot NBS study design that can be modified to include other disorders under consideration for public health implementation as a means to gather critical evidence for evidence-based NBS practices.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/genética , Tamizaje Neonatal/métodos , Pruebas con Sangre Seca/métodos , Femenino , Pruebas Genéticas/métodos , Genómica , Humanos , Recién Nacido , Masculino , Ciudad de Nueva York , Padres , Proyectos Piloto , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
17.
Mol Genet Metab ; 126(2): 183-187, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30172462

RESUMEN

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS: To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3ß,5α,6ß-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS: Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS: These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.


Asunto(s)
Ácidos y Sales Biliares/análisis , Pruebas con Sangre Seca , Enfermedad de Niemann-Pick Tipo C/sangre , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Bancos de Muestras Biológicas , Biomarcadores/sangre , California , Estudios de Casos y Controles , Cromatografía Liquida , Femenino , Humanos , Recién Nacido , Masculino , Michigan , Tamizaje Neonatal , New York , Estudios Retrospectivos , Espectrometría de Masas en Tándem
18.
Genet Med ; 21(7): 1644-1651, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30546085

RESUMEN

PURPOSE: Newborn screening for Krabbe disease (KD) originated in New York State in 2006 but has proven to have a high false positive rate and low positive predictive value. To improve accuracy of presymptomatic prediction, we propose a screening tool based on two biomarkers, psychosine and galactocerebrosidase enzyme activity (GalC). METHODS: We developed the tool using measures from dried blood spots of 166 normal newborns and tested it on dried blood spot measures from 15 newborns who later developed KD, 8 newborns identified as "high risk" by the New York screening protocol but were disease-free at follow-up, and 3 symptomatic children with onset before 4 years of age. The tool was developed from the (1-10-6)100% prediction region of the natural logarithms of psychosine and GalC measures, assuming bivariate normality, and their univariate normal limits. RESULTS: Krabbe disease was predicted correctly for every patient who developed symptoms in infancy or early childhood. None of the high-risk patients were incorrectly identified as having early KD. CONCLUSION: Bivariate analysis of psychosine and GalC in newborn blood spots can accurately predict early Krabbe symptoms, control false positive rates, and permit presymptomatic treatment.


Asunto(s)
Pruebas con Sangre Seca , Galactosilceramidasa/sangre , Leucodistrofia de Células Globoides/diagnóstico , Psicosina/sangre , Adulto , Biomarcadores/sangre , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Leucodistrofia de Células Globoides/sangre
19.
Orphanet J Rare Dis ; 13(1): 30, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391017

RESUMEN

BACKGROUND: Krabbe disease is a rare neurodegenerative genetic disorder caused by deficiency of galactocerebrosidase. Patients with the infantile form of Krabbe disease can be treated at a presymptomatic stage with human stem cell transplantation which improves survival and clinical outcomes. However, without a family history, most cases of infantile Krabbe disease present after onset of symptoms and are ineligible for transplantation. In 2006, New York began screening newborns for Krabbe disease to identify presymptomatic cases. To ensure that those identified with infantile disease received timely treatment, New York public health and medical systems took steps to accurately diagnose and rapidly refer infants for human stem cell transplantation within the first few weeks of life. After 11 years of active screening in New York and the introduction of Krabbe disease newborn screening in other states, new information has been gained which can inform the design of newborn screening programs to improve infantile Krabbe disease outcomes. FINDINGS: Recent information relevant to Krabbe disease screening, diagnosis, and treatment were assessed by a diverse group of public health, medical, and advocacy professionals. Outcomes after newborn screening may improve if treatment for infantile disease is initiated before 30 days of life. Newer laboratory screening and diagnostic tools can improve the speed and specificity of diagnosis and help facilitate this early referral. Given the rarity of Krabbe disease, most recommendations were based on case series or expert opinion. CONCLUSION: This report updates recommendations for Krabbe disease newborn screening to improve the timeliness of diagnosis and treatment of infantile Krabbe disease. In the United States, several states have begun or are considering Krabbe disease newborn screening. These recommendations can guide public health laboratories on methodologies for screening and inform clinicians about the need to promptly diagnose and treat infantile Krabbe disease. The timing of the initial referral after newborn screening, the speed of diagnostic confirmation of infantile disease, and the transplantation center's experience and ability to rapidly respond to a suspected patient with newly diagnosed infantile Krabbe disease are critical for optimal outcomes.


Asunto(s)
Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/terapia , Tamizaje Neonatal/métodos , Consenso , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Recién Nacido , Estados Unidos
20.
Genet Med ; 20(8): 840-846, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29095812

RESUMEN

PURPOSE: To describe a novel biochemical marker in dried blood spots suitable to improve the specificity of newborn screening for Pompe disease. METHODS: The new marker is a ratio calculated between the creatine/creatinine (Cre/Crn) ratio as the numerator and the activity of acid α-glucosidase (GAA) as the denominator. Using Collaborative Laboratory Integrated Reports (CLIR), the new marker was incorporated in a dual scatter plot that can achieve almost complete segregation between Pompe disease and false-positive cases. RESULTS: The (Cre/Crn)/GAA ratio was measured in residual dried blood spots of five Pompe cases and was found to be elevated (range 4.41-13.26; 99%ile of neonatal controls: 1.10). Verification was by analysis of 39 blinded specimens that included 10 controls, 24 samples with a definitive classification (16 Pompe, 8 false positives), and 5 with genotypes of uncertain significance. The CLIR tool showed 100% concordance of classification for the 24 known cases. Of the remaining five cases, three p.V222M homozygotes, a benign variant, were classified by CLIR as false positives; two with genotypes of unknown significance, one likely informative, were categorized as Pompe disease. CONCLUSION: The CLIR tool inclusive of the new ratio could have prevented at least 12 of 13 (92%) false-positive outcomes.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Tamizaje Neonatal/métodos , Algoritmos , Biomarcadores/sangre , Creatina/análisis , Creatina/sangre , Creatinina/análisis , Creatinina/sangre , Pruebas con Sangre Seca/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/sangre , Humanos , Recién Nacido , Sensibilidad y Especificidad , alfa-Glucosidasas/análisis , alfa-Glucosidasas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA