Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202412981, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141766

RESUMEN

7-Azaindole has been integrated as building block with complementary N-H···N hydrogen bonding sites for the synthesis of a tetrahedral molecular tecton, namely tetra(α-carbolin-6-yl)methane, TACM. The self-assembly of this molecule results in a 3D hydrogen-bonded organic framework (HOF). This supramolecular structure constitutes a crystalline microporous material with an extraordinary thermal and chemical robustness. Single crystal X-ray diffraction reveals how the five-fold catenation of diamonoid systems, stabilized by hydrogen bonds and π-π interactions, form an interpenetrated network with monodimensional channels. The structural features of the crystalline material are also observed by transmission electron microscopy (TEM). Additionally, the microporosity of the activated TACM-HOF is characterized by gas sorption (N2, CO2, CH4 and H2) experiments performed at different pressures. A selective adsorption is observed for CO2 uptake and TACM-HOF also presents a good adsorption capacity for H2 among supramolecular organic frameworks.

2.
Eur J Med Chem ; 276: 116618, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972079

RESUMEN

Ir(III) and Ru(II) polypyridyl complexes are promising photosensitizers (PSs) for photodynamic therapy (PDT) due to their outstanding photophysical properties. Herein, one series of cyclometallated Ir(III) complexes and two series of Ru(II) polypyridyl derivatives bearing three different thiazolyl-ß-carboline N^N' ligands have been synthesized, aiming to evaluate the impact of the different metal fragments ([Ir(C^N)2]+ or [Ru(N^N)2]2+) and N^N' ligands on the photophysical and biological properties. All the compounds exhibit remarkable photostability under blue-light irradiation and are emissive (605 < λem < 720 nm), with the Ru(II) derivatives displaying higher photoluminescence quantum yields and longer excited state lifetimes. The Ir PSs display pKa values between 5.9 and 7.9, whereas their Ru counterparts are less acidic (pKa > 9.3). The presence of the deprotonated form in the Ir-PSs favours the generation of reactive oxygen species (ROS) since, according to theoretical calculations, it features a low-lying ligand-centered triplet excited state (T1 = 3LC) with a long lifetime. All compounds have demonstrated anticancer activity. Ir(III) complexes 1-3 exhibit the highest cytotoxicity in dark conditions, comparable to cisplatin. Their activity is notably enhanced by blue-light irradiation, resulting in nanomolar IC50 values and phototoxicity indexes (PIs) between 70 and 201 in different cancer cell lines. The Ir(III) PSs are also activated by green (with PI between 16 and 19.2) and red light in the case of complex 3 (PI = 8.5). Their antitumor efficacy is confirmed by clonogenic assays and using spheroid models. The Ir(III) complexes rapidly enter cells, accumulating in mitochondria and lysosomes. Upon photoactivation, they generate ROS, leading to mitochondrial dysfunction and lysosomal damage and ultimately cell apoptosis. Additionally, they inhibit cancer cell migration, a crucial step in metastasis. In contrast, Ru(II) complex 6 exhibits moderate mitochondrial activity. Overall, Ir(III) complexes 1-3 show potential for selective light-controlled cancer treatment, providing an alternative mechanism to chemotherapy and the ability to inhibit lethal cancer cell dissemination.


Asunto(s)
Antineoplásicos , Carbolinas , Complejos de Coordinación , Ensayos de Selección de Medicamentos Antitumorales , Iridio , Fotoquimioterapia , Fármacos Fotosensibilizantes , Rutenio , Humanos , Iridio/química , Iridio/farmacología , Rutenio/química , Rutenio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Carbolinas/química , Carbolinas/farmacología , Carbolinas/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
3.
Chemistry ; : e202402094, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031525

RESUMEN

A comprehensive investigation of two new molecular triads incorporating the diketopyrrolopyrrole unit into a quinoidized thienothiophene skeleton, which is further end-capped with dicyanomethylene (DPP-TT-CN) or phenoxyl groups (DPP-TT-PhO), has been carried out. A combination of UV-Vis-NIR and infrared spectroelectrochemical techniques and cryogenic UV-Vis-NIR absorption spectroscopy supported by theoretical calculations has been used. The main result is the formation of similar H-aggregates in the dimerization process of the neutral molecules and of the charged anionic species. The experimental absorption spectra of the aggregated species are accurately reproduced by quantum chemical calculations using the Spano's model, including excitonic coupling for the dimeric forms and full vibronic resolution of the absorption bands. The strong excitonic coupling taking place is key to understand the electronic structure of the dimeric aggregates and has been instrumental to disentangle the type of H-aggregation. This study is of relevance to get a better understanding of the molecular aggregation of organic p-conjugated chromophores and is useful as a guideline for the refinement of the engineering of molecular materials for which supramolecular design is required.

4.
J Phys Chem Lett ; 15(30): 7814-7821, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39052305

RESUMEN

H-bonded N-heterotriangulene (NHT) supramolecular polymers offer a nice playground to explore the nature and dynamics of electronic excitations in low-dimensional organic nanostructures. Here, we report on a comprehensive molecular modeling of the excited-state electronic structure and optical properties of model NHT stacks, highlighting the important role of intermolecular charge-transfer (CT) excitations in shaping their optical absorption and emission lineshapes. Most importantly, we show that the coupling between the local and CT excitations, modulated by the electric fields induced by the presence of polar amide groups forming H-bonded arrays along the stacks, significantly increases the resulting hybrid exciton bandwidth. We discuss these findings in the context of the efficient transport of singlet excitons over the µm length scale reported experimentally on individual self-assembled nanofibers with molecular-scale diameter.

5.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38953447

RESUMEN

Herein, we explore, from a theoretical perspective, the nonradiative photoinduced processes (charge separation and energy transfer) within a family of donor-acceptor supramolecular complexes based on the electron-donor truxene-tetrathiafulvalene (truxTTF) derivative and a series of curved fullerene fragments (buckybowls) of different shapes and sizes (C30H12, C32H12, and C38H14) as electron acceptors that successfully combine with truxTTF via non-covalent interactions. The resulting supramolecular complexes (truxTTF·C30H12, truxTTF·C32H12, and truxTTF·C38H14) undergo charge-separation processes upon photoexcitation through charge-transfer states involving the donor and acceptor units. Despite the not so different size of the buckybowls, they present noticeable differences in the charge-separation efficiency owing to a complex decay post-photoexcitation mechanism involving several low-lying excited states of different natures (local and charge-transfer excitations), all closely spaced in energy. In this intricate scenario, we have adopted a theoretical approach combining electronic structure calculations at (time-dependent) density functional theory, a multistate multifragment diabatization method, the Marcus-Levitch-Jortner semiclassical rate expression, and a kinetic model to estimate the charge separation rate constants of the supramolecular heterodimers. Our outcomes highlight that the efficiency of the photoinduced charge-separation process increases with the extension of the buckybowl backbone. The supramolecular heterodimer with the largest buckybowl (truxTTF·C38H14) displays multiple and efficient electron-transfer pathways, providing a global photoinduced charge separation in the ultrafast time scale in line with the experimental findings. The study reported indicates that modifications in the shape and size of buckybowl systems can give rise to attractive novel acceptors for potential photovoltaic applications.

6.
Angew Chem Int Ed Engl ; : e202404014, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934233

RESUMEN

We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D π-conjugated oligoyne chains is rare given the minimal π-π intermolecular interactions as well as its flexibility that works against self-assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180 K, and is not observed for shorter oligoynes in this series. Cryogenic UV/Vis electronic absorption spectra and vibrational Raman spectra with different laser wavelength lines tuning from in-resonance to off-resonance conditions have been used to extract the vibrational features characterizing the monomer and aggregate species. Theoretical calculations complement the spectroscopic findings.

7.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257502

RESUMEN

A Global Navigation Satellite System (GNSS) is widely used today for both positioning and timing purposes. Many distinct receiver chips are available as Application-Specific Integrated Circuit (ASIC)s off-the-shelf, each tailored to the requirements of various applications. These chips deliver good performance and low energy consumption but offer customers little-to-no transparency about their internal features. This prevents modification, research in GNSS processing chain enhancement (e.g., application of Approximate Computing (AxC) techniques), and design space exploration to find the optimal receiver for a use case. In this paper, we review the GNSS processing chain using SyDR, our open-source GNSS Software-Defined Radio (SDR) designed for algorithm benchmarking, and highlight the limitations of a software-only environment. In return, we propose an evolution to our system, called Hard SyDR to become closer to the hardware layer and access new Key Performance Indicator (KPI)s, such as power/energy consumption and resource utilization. We use High-Level Synthesis (HLS) and the PYNQ platform to ease our development process and provide an overview of their advantages/limitations in our project. Finally, we evaluate the foreseen developments, including how this work can serve as the foundation for an exploration of AxC techniques in future low-power GNSS receivers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...