Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 5111-5124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920811

RESUMEN

Loigolactobacillus coryniformis is a member of lactic acid bacteria isolated from various ecological niches. We isolated a novel L. coryniformis strain FOL-19 from artisanal Tulum cheese and performed the whole-genome sequencing for FOL-19. Then, genomic characterization of FOL-19 against ten available whole genome sequences of the same species isolated from kimchi, silage, fermented meat, air of cowshed, dairy, and pheasant chyme was performed to uncover the genetic diversity and biotechnological potential of overall species. The average genome size of 2.93 ± 0.1 Mb, GC content of 42.96% ± 0.002, number of CDS of 2905 ± 165, number of tRNA of 56 ± 10, and number of CRISPR elements of 6.55 ± 1.83 was found. Both Type I and II Cas clusters were observed in L. coryniformis. No bacteriocin biosynthesis gene clusters were found. All strains harbored at least one plasmid except KCTC 3167. All strains were predicted to carry multiple IS elements. The most common origin of the IS elements was belong to Lactiplantibacillus plantarum. Comparative genomic analysis of L. coryniformis revealed hypervariability at the strain level and the presence of CRISPR/Cas suggests that L. coryniformis holds a promising potential for being a reservoir for new CRISPR-based tools. All L. coryniformis strains except PH-1 were predicted to harbor pdu and cbi-cob-hem gene clusters encoding industrially relevant traits of reuterin and cobalamin biosynthesis, respectively. These findings put a step forward for the genomic characterization of L. coryniformis strains for biotechnological applications via genome-guided strain selection to identify industrially relevant traits.

2.
J Biomol Struct Dyn ; 41(20): 10774-10784, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36591650

RESUMEN

The changes in the SARS-CoV-2 genome have resulted in the emergence of new variants. Some of the variants have been classified as variants of concern (VOC). These strains have higher transmission rate and improved fitness. One of the prevalent were the Omicron variant. Unlike previous VOCs, the Omicron possesses fifteen mutations on the spike protein's receptor binding domain (RBD). The modifications of spike protein's key amino acid residues facilitate the virus' binding capability against ACE2, resulting in an increase in the infectiousness of Omicron variant. Consequently, investigating the prevention and treatment of the Omicron variant is crucial. In the present study, we aim to explore the binding capacity of twenty-two bacteriocins derived from Lactic Acid Bacteria (LAB) against the Omicron variant by using protein-peptidedocking and molecular dynamics (MD) simulations. The Omicron variant RBD was prepared by introducing fifteen mutations using PyMol. The protein-peptide complexes were obtained using HADDOCK v2.4 docking webserver. Top scoring complexes obtained from HADDOCK webserver were retrieved and submitted to the PRODIGY server for the prediction of binding energies. RBD-bacteriocin complexes were subjected to MD simulations. We discovered promising peptide-based therapeutic candidates for the inhibition of Omicron variant for example Salivaricin B, Pediocin PA 1, Plantaricin W, Lactococcin mmfii and Enterocin A. The lead bacteriocins, except Enterocin A, are biosynthesized by food-grade lactic acid bacteria. Our study puts forth a preliminary information regarding potential utilization of food-grade LAB-derived bacteriocins, particularly Salivaricin B and Pediocin PA 1, for Covid-19 treatment and prophylaxis.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Bacteriocinas , COVID-19 , Humanos , Pediocinas , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Bacteriocinas/farmacología , Péptidos
3.
Probiotics Antimicrob Proteins ; 15(1): 17-29, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837166

RESUMEN

The COVID-19 pandemic caused by a novel coronavirus (SARS-CoV-2) is a serious health concern in the twenty-first century for scientists, health workers, and all humans. The absence of specific biotherapeutics requires new strategies to prevent the spread and prophylaxis of the novel virus and its variants. The SARS-CoV-2 virus shows pathogenesis by entering the host cells via spike protein and Angiotensin-Converting Enzyme 2 receptor protein. Thus, the present study aims to compute the binding energies between a wide range of bacteriocins with receptor-binding domain (RBD) on spike proteins of wild type (WT) and beta variant (lineage B.1.351). Molecular docking analyses were performed to evaluate binding energies. Upon achieving the best bio-peptides with the highest docking scores, further molecular dynamics (MD) simulations were performed to validate the structure and interaction stability. Protein-protein docking of the chosen 22 biopeptides with WT-RBD showed docking scores lower than -7.9 kcal/mol. Pediocin PA-1 and salivaricin P showed the lowest (best) docking scores of - 12 kcal/mol. Pediocin PA-1, salivaricin B, and salivaricin P showed a remarkable increase in the double mutant's predicted binding affinity with -13.8 kcal/mol, -13.0 kcal/mol, and -12.5 kcal/mol, respectively. Also, a better predicted binding affinity of pediocin PA-1 and salivaricin B against triple mutant was observed compared to the WT. Thus, pediocin PA-1 binds stronger to mutants of the RBD, particularly to double and triple mutants. Salivaricin B showed a better predicted binding affinity towards triple mutant compared to WT, showing that it might be another bacteriocin with potential activity against the SARS-CoV-2 beta variant. Overall, pediocin PA-1, salivaricin P, and salivaricin B are the most promising candidates for inhibiting SARS-CoV-2 (including lineage B.1.351) entrance into the human cells. These bacteriocins derived from lactic acid bacteria hold promising potential for paving an alternative way for treatment and prophylaxis of WT and beta variants.


Asunto(s)
Bacteriocinas , COVID-19 , Lactobacillales , Humanos , Bacteriocinas/farmacología , SARS-CoV-2/genética , Simulación del Acoplamiento Molecular , Pandemias
4.
J Biosci Bioeng ; 135(1): 34-43, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36384719

RESUMEN

This study aimed to perform genomic, probiotic, and metabolic characterization of a novel Liquorilactobacillus nagelii AGA58 isolated from a lactic acid-fermented shalgam beverage to understand its metabolic potentials and probiotic features. AGA58 is gram-positive, motile, catalase-negative and appears as short rods under the light-microscope. The AGA58 chromosome comprises a single linear chromosome of 2,294,635 bp that is predicted to carry 2135 coding sequences, including 45 tRNA genes, 3 mRNA, and 3 rRNA operons. The genome has a G+C content of 36.9%, including 55 pseudogenes and a single intact prophage. AGA58 is micro-anaerobic due to achieving a shorter doubling time and faster growth rate than micro-aerophilic conditions. It carries flagellar biosynthesis protein-encoding genes predicting motile behavior, which was confirmed with the in vitro motility test. AGA58 is an obligatory homofermentative lactobacillus that can ferment hexose sugars such as galactose, glucose, fructose, sucrose, mannose, N-acetyl glucosamine, maltose, and trehalose to lactate through glycolysis. No acid production from pentoses implies that five-carbon sugars are being utilized for purine and pyrimidine synthesis. Putative pyruvate metabolism revealed formate, malate, oxaloacetate, acetate, acetaldehyde, acetoin, and lactate forms from pyruvate. AGA58 is predicted to encode the LuxS gene and biosynthesis of class IIa and Blp family class-II bacteriocins suggesting this bacterium's antimicrobial potential, linked to antagonism tests that AGA58 can inhibit Escherichia coli ATCC 43895, Salmonellaenterica serovar Typhimurium ATCC 14028, and Klebsiellapneumonia ATCC 13883. Moreover, AGA58 is tolerant to acid and bile concentrations simulating the human gastrointestinal conditions depicting the probiotic potential of the organism as the first report in literature within the same species.


Asunto(s)
Ácido Láctico , Probióticos , Humanos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Genómica , Azúcares/metabolismo
5.
BMC Genomics ; 23(1): 803, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471243

RESUMEN

BACKGROUND: Lentilactobacillus parabuchneri is of particular concern in fermented food bioprocessing due to causing unwanted gas formation, cracks, and off-flavor in fermented dairy foods. This species is also a known culprit of histamine poisonings because of decarboxylating histidine to histamine in ripening cheese. Twenty-eight genomes in NCBI GenBank were evaluated via comparative analysis to determine genomic diversity within this species and identify potential avenues for reducing health associated risks and economic losses in the food industry caused by these organisms. RESULT: Core genome-based phylogenetic analysis revealed four distinct major clades. Eight dairy isolates, two strains from an unknown source, and a saliva isolate formed the first clade. Three out of five strains clustered on clade 2 belonged to dairy, and the remaining two strains were isolated from the makgeolli and Korean effective microorganisms (KEM) complex. The third and fourth clade members were isolated from Tete de Moine and dairy-associated niches, respectively. Whole genome analysis on twenty-eight genomes showed ~ 40% of all CDS were conserved across entire strains proposing a considerable diversity among L. parabuchneri strains analyzed. After assigning CDS to their corresponding function, ~ 79% of all strains were predicted to carry putative intact prophages, and ~ 43% of the strains harbored at least one plasmid; however, all the strains were predicted to encode genomic island, insertion sequence, and CRISPR-Cas system. A type I-E CRISPR-Cas subgroup was identified in all the strains, with the exception of DSM15352, which carried a type II-A CRISPR-Cas system. Twenty strains were predicted to encode histidine decarboxylase gene cluster that belongs to not only dairy but also saliva, KEM complex, and unknown source. No bacteriocin-encoding gene(s) or antibiotic resistome was found in any of the L. parabuchneri strains screened. CONCLUSION: The findings of the present work provide in-depth knowledge of the genomics of L. parabuchneri by comparing twenty-eight genomes available to date. For example, the hdc gene cluster was generally reported in cheese isolates; however, our findings in the current work indicated that it could also be encoded in those strains isolated from saliva, KEM complex, and unknown source. We think prophages are critical mobile elements of L. parabuchneri genomes that could pave the way for developing novel tools to reduce the occurrence of this unwanted species in the food industry.


Asunto(s)
Genoma Bacteriano , Microbiota , Filogenia , Histamina , Saliva , Genómica , Profagos
6.
BMC Genom Data ; 23(1): 61, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918643

RESUMEN

BACKGROUND: Leuconostoc lactis forms a crucial member of the genus Leuconostoc and has been widely used in the fermentation industry to convert raw material into acidified and flavored products in dairy and plant-based food systems. Since the ecological niches that strains of Ln. lactis being isolated from were truly diverse such as the human gut, dairy, and plant environments, comparative genome analysis studies are needed to better understand the strain differences from a metabolic adaptation point of view across diverse sources of origin. We compared eight Ln. lactis strains of 1.2.28, aa_0143, BIOML-A1, CBA3625, LN19, LN24, WIKIM21, and WiKim40 using bioinformatics to elucidate genomic level characteristics of each strain for better utilization of this species in a broad range of applications in food industry. RESULTS: Phylogenomic analysis of twenty-nine Ln. lactis strains resulted in nine clades. Whole-genome sequence analysis was performed on eight Ln. lactis strains representing human gastrointestinal tract and fermented foods microbiomes. The findings of the present study are based on comparative genome analysis against the reference Ln. lactis CBA3625 genome. Overall, a ~ 41% of all CDS were conserved between all strains. When the coding sequences were assigned to a function, mobile genetic elements, mainly insertion sequences were carried by all eight strains. All strains except LN24 and WiKim40 harbor at least one intact putative prophage region, and two of the strains contained CRISPR-Cas system. All strains encoded Lactococcin 972 bacteriocin biosynthesis gene clusters except for CBA3625. CONCLUSIONS: The findings in the present study put forth new perspectives on genomics of Ln. lactis via complete genome sequence based comparative analysis and further determination of genomic characteristics. The outcomes of this work could potentially pave the way for developing elements for future strain engineering applications.


Asunto(s)
Alimentos Fermentados , Microbiota , Genómica , Humanos , Leuconostoc/genética , Microbiota/genética
7.
Front Microbiol ; 13: 1074366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713205

RESUMEN

Leuconostoc pseudomesenteroides is a lactic acid bacteria species widely exist in fermented dairy foods, cane juice, sourdough, kimchi, apple dumpster, caecum, and human adenoid. In the dairy industry, Ln. pseudomesenteroides strains are usually found in mesophilic starter cultures with lactococci. This species plays a crucial role in the production of aroma compounds such as acetoin, acetaldehyde, and diacetyl, thus beneficially affecting dairy technology. We performed genomic characterization of 38 Ln. pseudomesenteroides from diverse ecological niches to evaluate this species' genetic diversity and biotechnological potential. A mere ~12% of genes conserved across 38 Ln. pseudomesenteroides genomes indicate that accessory genes are the driving force for genotypic distinction in this species. Seven main clades were formed with variable content surrounding mobile genetic elements, namely plasmids, transposable elements, IS elements, prophages, and CRISPR-Cas. All but three genomes carried CRISPR-Cas system. Furthermore, a type IIA CRISPR-Cas system was found in 80% of the CRISPR-Cas positive strains. AMBR10, CBA3630, and MGBC116435 were predicted to encode bacteriocins. Genes responsible for citrate metabolism were found in all but five strains belonging to cane juice, sourdough, and unknown origin. On the contrary, arabinose metabolism genes were only available in nine strains isolated from plant-related systems. We found that Ln. pseudomesenteroides genomes show evolutionary adaptation to their ecological environment due to niche-specific carbon metabolism and forming closely related phylogenetic clades based on their isolation source. This species was found to be a reservoir of type IIA CRISPR-Cas system. The outcomes of this study provide a framework for uncovering the biotechnological potential of Ln. pseudomesenteroides and its future development as starter or adjunct culture for dairy industry.

8.
J Dairy Sci ; 100(11): 8764-8767, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28918154

RESUMEN

Lactobacillus wasatchensis, an obligate heterofermentative nonstarter lactic acid bacteria (NSLAB) implicated in causing gas defects in aged cheeses, was originally isolated from an aged Cheddar produced in Logan, Utah. To determine the geographical distribution of this organism, we isolated slow-growing NSLAB from cheeses collected in different regions of the United States, Australia, New Zealand, and Ireland. Seven of the cheeses showed significant gas defects and 12 did not. Nonstarter lactic acid bacteria were isolated from these cheeses on de Man, Rogosa, and Sharpe medium supplemented with ribose, a preferred substrate for Lb. wasatchensis. Identification was confirmed with 16S rRNA gene sequencing and the API50CH (bioMérieux, Marcy l'Etoile, France) carbohydrate panel. Isolates were also compared with one another by using repetitive element sequence-based PCR (rep-PCR). Lactobacillus wasatchensis was isolated only from cheeses demonstrating late-gas development and was found in samples from 6 of the 7 cheeses. This supports laboratory evidence that this organism is a causative agent of late gas production defects. The rep-PCR analysis produced distinct genetic fingerprints for isolates from each cheese, indicating that Lb. wasatchensis is found in several regions across the United States and is not a local phenomenon.


Asunto(s)
Queso/análisis , Microbiología de Alimentos , Lactobacillus/genética , Animales , Australia , Fermentación , Irlanda , Lactobacillus/clasificación , Lactobacillus/aislamiento & purificación , Nueva Zelanda , ARN Ribosómico 16S , Estados Unidos
9.
Int J Syst Evol Microbiol ; 66(1): 158-164, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26475452

RESUMEN

A Gram-stain positive, rod-shaped, non-spore-forming strain (WDC04T), which may be associated with late gas production in cheese, was isolated from aged Cheddar cheese following incubation on MRS agar (pH 5.2) at 6 °C for 35 days. Strain WDC04T had 97 % 16S rRNA gene sequence similarity with Lactobacillus hokkaidonensis DSM 26202T, Lactobacillus oligofermentans 533, 'Lactobacillus danicus' 9M3, Lactobacillus suebicus CCUG 32233T and Lactobacillus vaccinostercus DSM 20634T. API 50 CH carbohydrate fermentation panels indicated strain WDC04T could only utilize one of the 50 substrates tested, ribose, although it does slowly utilize galactose. In the API ZYM system, strain WDC04T was positive for leucine arylamidase, valine arylamidase, cysteine arylamidase (weakly), naphthol-AS-BI-phosphohydrolase and ß-galactosidase activities. Total genomic DNA was sequenced from strain WDC04T using a whole-genome shotgun strategy on a 454 GS Titanium pyrosequencer. The sequence was assembled into a 1.90 Mbp draft genome consisting of 105 contigs with preliminary genome annotation performed using the RAST algorithm (rast.nmpdr.org). Genome analysis confirmed the pentose phosphate pathway for ribose metabolism as well as galactose, N-acetylglucosamine, and glycerol fermentation pathways. Genomic analysis places strain WDC04T in the obligately heterofermentative group of lactobacilli and metabolic results confirm this conclusion. The result of genome sequencing, along with 16S rRNA gene sequence analysis, indicates WDC04T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus wasatchensis sp. nov. is proposed. The type strain is WDC04T ( = DSM 29958T = LMG 28678T).


Asunto(s)
Queso/microbiología , Lactobacillus/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Ácido Láctico/metabolismo , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
J Dairy Sci ; 98(11): 7473-82, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26364109

RESUMEN

A novel slow-growing, obligatory heterofermentative, nonstarter lactic acid bacterium (NSLAB), Lactobacillus wasatchensis WDC04, was studied for growth and gas production in Cheddar-style cheese made using Streptococcus thermophilus as the starter culture. Cheesemaking trials were conducted using S. thermophilus alone or in combination with Lb. wasatchensis deliberately added to cheese milk at a level of ~10(4) cfu/mL. Resulting cheeses were ripened at 6 or 12°C. At d 1, starter streptococcal numbers were similar in both cheeses (~10(9) cfu/g) and fast-growing NSLAB lactobacilli counts were below detectable levels (<10(2) cfu/g). As expected, Lactobacillus wasatchensis counts were 3×10(5) cfu/g in cheeses inoculated with this bacterium and below enumeration limits in the control cheese. Starter streptococci decreased over time at both storage temperatures but declined more rapidly at 12°C, especially in cheese also containing Lb. wasatchensis. Populations of fast-growing NSLAB and the slow-growing Lb. wasatchensis reached 5×10(7) and 2×10(8) cfu/g, respectively, after 16 wk of storage at 12°C. Growth of NSLAB coincided with a reduction in galactose concentration in the cheese from 0.6 to 0.1%. Levels of galactose at 6°C had similar decrease. Gas formation and textural defects were only observed in cheese with added Lb. wasatchensis ripened at 12°C. Use of S. thermophilus as starter culture resulted in galactose accumulation that Lb. wasatchensis can use to produce CO2, which contributes to late gas blowing in Cheddar-style cheeses, especially when the cheese is ripened at elevated temperature.


Asunto(s)
Queso/microbiología , Fermentación , Manipulación de Alimentos/métodos , Lactobacillus/crecimiento & desarrollo , Streptococcus thermophilus/crecimiento & desarrollo , Animales , Recuento de Colonia Microbiana , Microbiología de Alimentos , Leche/microbiología , Temperatura
11.
J Dairy Sci ; 98(11): 7460-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26298753

RESUMEN

Lactobacillus wasatchensis sp. nov. has been studied for growth and gas formation in a control Cheddar cheese and in cheese supplemented with 0.5% ribose, 0.5% galactose, or 0.25% ribose plus 0.25% galactose using regular and accelerated cheese ripening temperatures of 6 and 12°C, respectively. Milk was inoculated with (1) Lactococcus lactis starter culture, or (2) Lc. lactis starter culture plus Lb. wasatchensis (10(4) cfu/mL). In the control cheese with no added Lb. wasatchensis, starter numbers decreased from 10(7) initially to ~10(4) cfu/g over 23 wk of ripening at 6°C. When the cheese was ripened at 12°C, or if Lb. wasatchensis was added, the final starter counts were 1 log lower. In contrast, nonstarter lactic acid bacteria in the cheese increased from <10(2) cfu/g at press to 10(6) to 10(7) cfu/g after 23 wk, with higher numbers being observed with ripening at 12°C. In cheese with no added Lb. wasatchensis, levels of Lb. wasatchensis were initially below the enumeration threshold but counts of up to 10(3) cfu/g were detected after 23 wk. When the cheese was inoculated with Lb. wasatchensis, it could be enumerated throughout ripening, with final levels at 23 wk being dependent on whether ribose had been added to the cheese curd. With added ribose (with or without added galactose), Lb. wasatchensis grew to 10(7) to 10(8) cfu/g after 23 wk, whereas without added ribose it was 1 log lower. In all cheeses with added Lb. wasatchensis, greater gas formation was observed at 12°C, with most gas production occurring after ~16 wk. Very little gas production was detected in cheese without added Lb. wasatchensis ripened at 12°C or in cheese with added Lb. wasatchensis ripened at 6°C. Adding a combination of ribose and galactose caused more gas formation, putatively because of the ability of Lb. wasatchensis to co-utilize both sugars and grow to high numbers, and then produce gas from galactose as ribose levels were depleted. Even without sugar supplementation, gas was observed in cheese with added Lb. wasatchensis after 16 wk. We also observed that Lb. wasatchensis could grow to high cell densities when grown in carbohydrate-restricted broth containing lactococcal cell lysate. This suggests that during cheese ripening, lysis of starter bacteria provides sufficient substrates (such as ribose) to allow growth of Lb. wasatchensis and, if fermentable hexose is available, the cheese will become gassy. We conclude that Lb. wasatchensis is a previously undetected contributor to late gas formation in Cheddar cheese and the defect is more pronounced when elevated ripening temperatures are used.


Asunto(s)
Queso/análisis , Queso/microbiología , Manipulación de Alimentos/métodos , Galactosa/metabolismo , Lactobacillus/metabolismo , Ribosa/metabolismo , Animales , Recuento de Colonia Microbiana , Fermentación , Microbiología de Alimentos , Lactococcus lactis/metabolismo , Leche/microbiología
12.
J Dairy Sci ; 98(6): 3645-54, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25795482

RESUMEN

An obligatory heterofermentative lactic acid bacterium, Lactobacillus wasatchii sp. nov., isolated from gassy Cheddar cheese was studied for growth, gas formation, salt tolerance, and survival against pasteurization treatments at 63°C and 72°C. Initially, Lb. wasatchii was thought to use only ribose as a sugar source and we were interested in whether it could also utilize galactose. We conducted experiments to determine the rate and extent of growth and gas production in carbohydrate-restricted (CR) de Man, Rogosa, and Sharpe (MRS) medium under anaerobic conditions with various combinations of ribose and galactose at 12, 23, and 37°C, with 23°C being the optimum growth temperature of Lb. wasatchii among the 3 temperatures studied. When Lb. wasatchii was grown on ribose (0.1, 0.5, and 1%), maximum specific growth rates (µmax) within each temperature were similar. When galactose was the only sugar, compared with ribose, µmax was 2 to 4 times lower. At all temperatures, the highest final cell densities (optical density at 640 nm) of Lb. wasatchii were achieved in CR-MRS plus 1% ribose, 0.5% ribose and 0.5% galactose, or 1% ribose and 1% galactose. Similar µmax values and final cell densities were achieved when 50% of the ribose in CR-MRS was substituted with galactose. Such enhanced utilization of galactose in the presence of ribose to support bacterial growth has not previously been reported. It appears that Lb. wasatchii co-metabolizes ribose and galactose, utilizing ribose for energy and galactose for other functions such as cell wall biosynthesis. Co-utilization of both sugars could be an adaptation mechanism of Lb. wasatchii to the cheese environment to efficiently ferment available sugars for maximizing metabolism and growth. As expected, gas formation by the heterofermenter was observed only when galactose was present in the medium. Growth experiments with MRS plus 1.5% ribose at pH 5.2 or 6.5 with 0, 1, 2, 3, 4, or 5% NaCl revealed that Lb. wasatchii is able to grow under salt and pH conditions typical of Cheddar cheese (4 to 5% salt-in-moisture, pH ~5.2). Finally, we found that Lb. wasatchii cannot survive low-temperature, long-time pasteurization but survives high-temperature, short-time (HTST) laboratory pasteurization, under which a 4.5 log reduction occurred. The ability of Lb. wasatchii to survive HTST pasteurization and grow under cheese ripening conditions implies that the presence of this nonstarter lactic acid bacterium can be a serious contributor to gas formation and textural defects in Cheddar cheese.


Asunto(s)
Queso/microbiología , Lactobacillus/metabolismo , Animales , Carbohidratos , Fermentación , Galactosa/metabolismo , Ácido Láctico/metabolismo , Ribosa , Cloruro de Sodio Dietético , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA