Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neoplasia ; 53: 101003, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759377

RESUMEN

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Asunto(s)
Retículo Endoplásmico , Quinasas Quinasa Quinasa PAM , Microtúbulos , Transducción de Señal , Microtúbulos/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Acetilación , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Estrés del Retículo Endoplásmico , Ratones , Proteínas de Microtúbulos
2.
Biochem Biophys Res Commun ; 711: 149916, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38613866

RESUMEN

ßIV-spectrin is a membrane-associated cytoskeletal protein that maintains the structural stability of cell membranes and integral proteins such as ion channels and transporters. Its biological functions are best characterized in the brain and heart, although recently we discovered a fundamental new role in the vascular system. Using cellular and genetic mouse models, we reported that ßIV-spectrin acts as a critical regulator of developmental and tumor-associated angiogenesis. ßIV-spectrin was shown to selectively express in proliferating endothelial cells (EC) and suppress VEGF/VEGFR2 signaling by enhancing receptor internalization and degradation. Here we examined how these events impact the downstream kinase signaling cascades and target substrates. Based on quantitative phosphoproteomics, we found that ßIV-spectrin significantly affects the phosphorylation of epigenetic regulatory enzymes in the nucleus, among which DNA methyltransferase 1 (DNMT1) was determined as a top substrate. Biochemical and immunofluorescence results showed that ßIV-spectrin inhibits DNMT1 function by activating ERK/MAPK, which in turn phosphorylates DNMT1 at S717 to impede its nuclear localization. Given that DNMT1 controls the DNA methylation patterns genome-wide, and is crucial for vascular development, our findings suggest that epigenetic regulation is a key mechanism by which ßIV-spectrin suppresses angiogenesis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Sistema de Señalización de MAP Quinasas , Proteómica , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Animales , Proteómica/métodos , Ratones , Fosforilación , Humanos , Neovascularización Fisiológica , Espectrina/metabolismo , Espectrina/genética , Fosfoproteínas/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales/metabolismo , Angiogénesis
3.
Cancer Med ; 12(18): 18981-18987, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37680049

RESUMEN

BACKGROUND: Tumor-associated angiogenesis mediates the growth and metastasis of most solid cancers. Targeted therapies of the VEGF pathways can effectively block these processes but often fail to provide lasting benefits due to acquired resistance and complications. RESULTS: Recently, we discovered ßIV -spectrin as a powerful regulator of angiogenesis and potential new target. We previously reported that ßIV -spectrin is dynamically expressed in endothelial cells (EC) to induce VEGFR2 protein turnover during development. Here, we explored how ßIV -spectrin influences the tumor vasculature using the murine B16 melanoma model and determined that loss of EC-specific ßIV -spectrin dramatically promotes tumor growth and metastasis. Intraperitoneally injected B16 cells formed larger tumors with increased tumor vessel density and greater propensity for metastatic spread particularly to the chest cavity and lung compared to control mice. These results support ßIV -spectrin as a key regulator of tumor angiogenesis and a viable vascular target in cancer.


Asunto(s)
Melanoma Experimental , Espectrina , Animales , Ratones , Células Endoteliales/metabolismo , Melanoma Experimental/irrigación sanguínea , Neovascularización Patológica , Espectrina/metabolismo
4.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131821

RESUMEN

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to numerous growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT pathway may be a key target in ER stress and dysfunction.

5.
Mol Biol Cell ; 34(7): ar72, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126382

RESUMEN

ßIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for ßIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, ßIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing ßIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of ßIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce ßIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that ßIV-spectrin acts upstream of these pathways as loss of ßIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate ßIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Espectrina , Animales , Ratones , Células Endoteliales/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Espectrina/metabolismo
6.
J Biol Chem ; 298(9): 102297, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872017

RESUMEN

Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-ß receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-ß or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-ß or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-ß pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.


Asunto(s)
Endoglina , Factor 2 de Diferenciación de Crecimiento , Insulina , Neovascularización Patológica , Proteínas del Tejido Nervioso , Receptores de Factores de Crecimiento Transformadores beta , Animales , Humanos , Ratones , Receptores de Activinas Tipo II/metabolismo , Chlorocebus aethiops , Células COS , Endoglina/genética , Endoglina/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Insulina/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas , Proteómica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
Nat Commun ; 13(1): 1326, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288568

RESUMEN

Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report ßIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific ßIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, ßIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, ßIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development.


Asunto(s)
Espectrina , Factor A de Crecimiento Endotelial Vascular , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Neovascularización Fisiológica , Proteómica , Transducción de Señal , Espectrina/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
Mol Biol Cell ; 33(1): ar4, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34705526

RESUMEN

Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission, a large cytoplasmic GTPase recruited to the mitochondrial surface via transmembrane adaptors to initiate scission. While Brownian motion likely accounts for the local interactions between Drp1 and the mitochondrial adaptors, how this essential enzyme is targeted from more distal regions like the cell periphery remains unknown. Based on proteomic interactome screening and cell-based studies, we report that GAIP/RGS19-interacting protein (GIPC) mediates the actin-based retrograde transport of Drp1 toward the perinuclear mitochondria to enhance fission. Drp1 interacts with GIPC through its atypical C-terminal PDZ-binding motif. Loss of this interaction abrogates Drp1 retrograde transport resulting in cytoplasmic mislocalization and reduced fission despite retaining normal intrinsic GTPase activity. Functionally, we demonstrate that GIPC potentiates the Drp1-driven proliferative and migratory capacity in cancer cells. Together, these findings establish a direct molecular link between altered GIPC expression and Drp1 function in cancer progression and metabolic disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Citoplasma/metabolismo , Citosol/metabolismo , Dinaminas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Unión Proteica , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA