Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lancet Rheumatol ; 6(6): e374-e383, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734017

RESUMEN

BACKGROUND: Giant cell arteritis is an age-related vasculitis that mainly affects the aorta and its branches in individuals aged 50 years and older. Current options for diagnosis and treatment are scarce, highlighting the need to better understand its underlying pathogenesis. Genome-wide association studies (GWAS) have emerged as a powerful tool for unravelling the pathogenic mechanisms involved in complex diseases. We aimed to characterise the genetic basis of giant cell arteritis by performing the largest GWAS of this vasculitis to date and to assess the functional consequences and clinical implications of identified risk loci. METHODS: We collected and meta-analysed genomic data from patients with giant cell arteritis and healthy controls of European ancestry from ten cohorts across Europe and North America. Eligible patients required confirmation of giant cell arteritis diagnosis by positive temporal artery biopsy, positive temporal artery doppler ultrasonography, or imaging techniques confirming large-vessel vasculitis. We assessed the functional consequences of loci associated with giant cell arteritis using cell enrichment analysis, fine-mapping, and causal gene prioritisation. We also performed a drug repurposing analysis and developed a polygenic risk score to explore the clinical implications of our findings. FINDINGS: We included a total of 3498 patients with giant cell arteritis and 15 550 controls. We identified three novel loci associated with risk of giant cell arteritis. Two loci, MFGE8 (rs8029053; p=4·96 × 10-8; OR 1·19 [95% CI 1·12-1·26]) and VTN (rs704; p=2·75 × 10-9; OR 0·84 [0·79-0·89]), were related to angiogenesis pathways and the third locus, CCDC25 (rs11782624; p=1·28 × 10-8; OR 1·18 [1·12-1·25]), was related to neutrophil extracellular traps (NETs). We also found an association between this vasculitis and HLA region and PLG. Variants associated with giant cell arteritis seemed to fulfil a specific regulatory role in crucial immune cell types. Furthermore, we identified several drugs that could represent promising candidates for treatment of this disease. The polygenic risk score model was able to identify individuals at increased risk of developing giant cell arteritis (90th percentile OR 2·87 [95% CI 2·15-3·82]; p=1·73 × 10-13). INTERPRETATION: We have found several additional loci associated with giant cell arteritis, highlighting the crucial role of angiogenesis in disease susceptibility. Our study represents a step forward in the translation of genomic findings to clinical practice in giant cell arteritis, proposing new treatments and a method to measure genetic predisposition to this vasculitis. FUNDING: Institute of Health Carlos III, Spanish Ministry of Science and Innovation, UK Medical Research Council, and National Institute for Health and Care Research.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Arteritis de Células Gigantes , Arteritis de Células Gigantes/genética , Arteritis de Células Gigantes/patología , Humanos , Sitios Genéticos/genética , Femenino , Masculino , Anciano , Polimorfismo de Nucleótido Simple , Persona de Mediana Edad , Estudios de Casos y Controles
2.
J Autoimmun ; 146: 103240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754238

RESUMEN

BACKGROUND: Giant cell arteritis (GCA) is an immune-mediated large-vessels vasculitis with complex etiology. Although the pathogenic mechanisms remain poorly understood, a central role for CD4+ T cells has been demonstrated. In this context, understanding the transcriptome dysregulation in GCA CD4+ T cells will yield new insights into its pathogenesis. METHODS: Transcriptome analysis was conducted on CD4+ T cells from 70 patients with GCA with different disease activity and treatment status (active patients before treatment and patients in remission with and without glucocorticoid treatment), and 28 healthy controls. The study also evaluated potential impacts of DNA methylation on gene expression alterations and assessed cross-talk with CD14+ monocytes. RESULTS: This study has uncovered a substantial number of genes and pathways potentially contributing to the pathogenicity of CD4+ T cells in GCA. Specifically, CD4+ T cells from GCA patients with active disease exhibited altered expression levels of genes involved in multiple immune-related processes, including various interleukins (IL) signaling pathways. Notably, IL-2, a decisive interleukin for regulatory T cells homeostasis, was among the most significant. Additionally, impaired apoptotic pathways appear crucial in GCA development. Our findings also suggest that histone-related epigenetic pathways may be implicated in promoting an inflammatory phenotype in GCA active patients. Finally, our study observed altered signaling communication, such as the Jagged-Notch signaling, between CD4+ T cells and monocytes that could have pathogenic relevance in GCA. CONCLUSIONS: Our study suggests the participation of novel cytokines and pathways and the occurrence of a disruption of monocyte-T cell crosstalk driving GCA pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos , Perfilación de la Expresión Génica , Arteritis de Células Gigantes , Monocitos , Transducción de Señal , Transcriptoma , Humanos , Arteritis de Células Gigantes/inmunología , Arteritis de Células Gigantes/genética , Monocitos/inmunología , Monocitos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Femenino , Masculino , Anciano , Metilación de ADN , Persona de Mediana Edad , Anciano de 80 o más Años , Epigénesis Genética , Comunicación Celular/inmunología , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...