Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Channels (Austin) ; 18(1): 2335469, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38564754

RESUMEN

Studies in genetically modified animals and human genetics have recently provided new insight into the role of voltage-gated L-type Ca2+ channels in human disease. Therefore, the inhibition of L-type Ca2+ channels in vivo in wildtype and mutant mice by potent dihydropyridine (DHP) Ca2+ channel blockers serves as an important pharmacological tool. These drugs have a short plasma half-life in humans and especially in rodents and show high first-pass metabolism upon oral application. In the vast majority of in vivo studies, they have therefore been delivered through parenteral routes, mostly subcutaneously or intraperitoneally. High peak plasma concentrations of DHPs cause side effects, evident as DHP-induced aversive behaviors confounding the interpretation of behavioral readouts. Nevertheless, pharmacokinetic data measuring the exposure achieved with these applications are sparse. Moreover, parenteral injections require animal handling and can be associated with pain, discomfort and stress which could influence a variety of physiological processes, behavioral and other functional readouts. Here, we describe a noninvasive oral application of the DHP isradipine by training mice to quickly consume small volumes of flavored yogurt that can serve as drug vehicle. This procedure does not require animal handling, allows repeated drug application over several days and reproducibly achieves peak plasma concentrations over a wide range previously shown to be well-tolerated in humans. This protocol should facilitate ongoing nonclinical studies in mice exploring new indications for DHP Ca2+ channel blockers.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo L , Ratones , Humanos , Animales , Isradipino/farmacología , Isradipino/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Administración Oral
2.
Eur J Hum Genet ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553610

RESUMEN

Voltage-gated L-type Cav1.3 Ca2+ channels support numerous physiological functions including neuronal excitability, sinoatrial node pacemaking, hearing, and hormone secretion. De novo missense mutations in the gene of their pore-forming α1-subunit (CACNA1D) induce severe gating defects which lead to autism spectrum disorder and a more severe neurological disorder with and without endocrine symptoms. The number of CACNA1D variants reported is constantly rising, but their pathogenic potential often remains unclear, which complicates clinical decision-making. Since functional tests are time-consuming and not always available, bioinformatic tools further improving pathogenicity potential prediction of novel variants are needed. Here we employed evolutionary analysis considering sequences of the Cav1.3 α1-subunit throughout the animal kingdom to predict the pathogenicity of human disease-associated CACNA1D missense variants. Co-variation analyses of evolutionary information revealed residue-residue couplings and allowed to generate a score, which correctly predicted previously identified pathogenic variants, supported pathogenicity in variants previously classified as likely pathogenic and even led to the re-classification or re-examination of 18 out of 80 variants previously assessed with clinical and electrophysiological data. Based on the prediction score, we electrophysiologically tested one variant (V584I) and found significant gating changes associated with pathogenic risks. Thus, our co-variation model represents a valuable addition to complement the assessment of the pathogenicity of CACNA1D variants completely independent of clinical diagnoses, electrophysiology, structural or biophysical considerations, and solely based on evolutionary analyses.

3.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37698939

RESUMEN

Germline de novo missense variants of the CACNA1D gene, encoding the pore-forming α1 subunit of Cav1.3 L-type Ca2+ channels (LTCCs), have been found in patients with neurodevelopmental and endocrine dysfunction, but their disease-causing potential is unproven. These variants alter channel gating, enabling enhanced Cav1.3 activity, suggesting Cav1.3 inhibition as a potential therapeutic option. Here we provide proof of the disease-causing nature of such gating-modifying CACNA1D variants using mice (Cav1.3AG) containing the A749G variant reported de novo in a patient with autism spectrum disorder (ASD) and intellectual impairment. In heterozygous mutants, native LTCC currents in adrenal chromaffin cells exhibited gating changes as predicted from heterologous expression. The A749G mutation induced aberrant excitability of dorsomedial striatum-projecting substantia nigra dopamine neurons and medium spiny neurons in the dorsal striatum. The phenotype observed in heterozygous mutants reproduced many of the abnormalities described within the human disease spectrum, including developmental delay, social deficit, and pronounced hyperactivity without major changes in gross neuroanatomy. Despite an approximately 7-fold higher sensitivity of A749G-containing channels to the LTCC inhibitor isradipine, oral pretreatment over 2 days did not rescue the hyperlocomotion. Cav1.3AG mice confirm the pathogenicity of the A749G variant and point toward a pathogenetic role of altered signaling in the dopamine midbrain system.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Animales , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Mutación , Dopamina , Fenotipo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo
4.
Br J Pharmacol ; 180(10): 1289-1303, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36788128

RESUMEN

Voltage-gated L-type Ca2+ -channels (LTCCs) are the target of Ca2+ -channel blockers (CCBs), which are in clinical use for the evidence-based treatment of hypertension and angina. Their cardiovascular effects are largely mediated by the Cav 1.2-subtype. However, based on our current understanding of their physiological and pathophysiological roles, Cav 1.3 LTCCs also appear as attractive drug targets for the therapy of various diseases, including treatment-resistant hypertension, spasticity after spinal cord injury and neuroprotection in Parkinson's disease. Since CCBs inhibit both Cav 1.2 and Cav 1.3, Cav 1.3-selective inhibitors would be valuable tools to validate the therapeutic potential of Cav 1.3 channel inhibition in preclinical models. Despite a number of publications reporting the discovery of Cav 1.3-selective blockers, their selectivity remains controversial. We conclude that at present no pharmacological tools exist that are suitable to confirm or refute a role of Cav 1.3 channels in cellular responses. We also suggest essential criteria for a small molecule to be considered Cav 1.3-selective.


Asunto(s)
Canales de Calcio Tipo L , Enfermedad de Parkinson , Humanos , Canales de Calcio Tipo L/fisiología
5.
Handb Exp Pharmacol ; 279: 183-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592224

RESUMEN

Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.


Asunto(s)
Trastorno Autístico , Canalopatías , Hipertensión , Humanos , Trastorno Autístico/genética , Canalopatías/genética , Hipertensión/genética , Canales de Calcio Tipo L/genética
6.
Hum Mol Genet ; 32(5): 847-859, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36208199

RESUMEN

Germline gain-of-function missense variants in the pore-forming Cav1.3 α1-subunit (CACNA1D gene) confer high risk for a severe neurodevelopmental disorder with or without endocrine symptoms. Here, we report a 4-week-old new-born with the novel de novo missense variant F747S with a so far not described prominent jittering phenotype in addition to symptoms previously reported for CACNA1D mutations including developmental delay, elevated aldosterone level and transient hypoglycemia. We confirmed the pathogenicity of this variant in whole-cell patch-clamp experiments with wild-type and F747S mutant channels heterologously expressed together with α2δ1 and cytosolic ß3 or membrane-bound ß2a subunits. Mutation F747S caused the quantitatively largest shift in the voltage dependence of activation (-28 mV) reported so far for CACNA1D germline mutations. It also shifted inactivation to more negative voltages, slowed the time course of current inactivation and slowed current deactivation upon repolarization with both co-expressed ß-subunits. In silico modelling and molecular docking, simulations revealed that this gain-of-function phenotype can be explained by formation of a novel inter-domain hydrogen bond between mutant residues S747 (IIS6) with N1145 (IIIS6) stabilizing selectively the activated open channel state. F747S displayed 2-6-fold increased sensitivity for the L-type Ca2+ channel blocker isradipine compared to wild type. Our data confirm the pathogenicity of the F747S variant with very strong gain-of-function gating changes, which may contribute to the novel jittering phenotype. Increased sensitivity for isradipine suggests this drug for potential symptomatic off-label treatment for carriers of this mutation.


Asunto(s)
Calcio , Canalopatías , Humanos , Mutación de Línea Germinal , Isradipino , Simulación del Acoplamiento Molecular , Fenotipo , Células Germinativas , Canales de Calcio Tipo L
7.
J Gen Physiol ; 154(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349630

RESUMEN

The skeletal muscle voltage-gated calcium channel (CaV1.1) primarily functions as a voltage sensor for excitation-contraction coupling. Conversely, its ion-conducting function is modulated by multiple mechanisms within the pore-forming α1S subunit and the auxiliary α2δ-1 and γ1 subunits. In particular, developmentally regulated alternative splicing of exon 29, which inserts 19 amino acids in the extracellular IVS3-S4 loop of CaV1.1a, greatly reduces the current density and shifts the voltage dependence of activation to positive potentials outside the physiological range. We generated new HEK293 cell lines stably expressing α2δ-1, ß3, and STAC3. When the adult (CaV1.1a) and embryonic (CaV1.1e) splice variants were expressed in these cells, the difference in the voltage dependence of activation observed in muscle cells was reproduced, but not the reduced current density of CaV1.1a. Only when we further coexpressed the γ1 subunit was the current density of CaV1.1a, but not that of CaV1.1e, reduced by >50%. In addition, γ1 caused a shift of the voltage dependence of inactivation to negative voltages in both variants. Thus, the current-reducing effect of γ1, unlike its effect on inactivation, is specifically dependent on the inclusion of exon 29 in CaV1.1a. Molecular structure modeling revealed several direct ionic interactions between residues in the IVS3-S4 loop and the γ1 subunit. However, substitution of these residues by alanine, individually or in combination, did not abolish the γ1-dependent reduction of current density, suggesting that structural rearrangements in CaV1.1a induced by inclusion of exon 29 may allosterically empower the γ1 subunit to exert its inhibitory action on CaV1.1 calcium currents.


Asunto(s)
Empalme Alternativo , Calcio , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Acoplamiento Excitación-Contracción , Células HEK293 , Humanos
8.
Mov Disord ; 37(2): 401-404, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34647648

RESUMEN

BACKGROUND: Spinocerebellar ataxia (SCA) is a progressive, autosomal dominant neurodegenerative disorder typically associated with CAG repeat expansions. OBJECTIVE: We assessed the pathogenicity of the novel, heterozygous missense variant p.Cys256Phe (C256F) in the pore-forming α1-subunit of the Cav2.1 Ca2+ channel found in a 63-year-old woman with SCA with no CAG repeat expansion. METHODS: We examined the effect of the C256F variant on channel function using whole-cell patch-clamp recordings in transfected tsA-201 cells. RESULTS: The maximum Ca2+ current density was significantly reduced in the mutant compared to wild-type, which could not be explained by lower expression levels of mutant Cav2.1 α1- protein. Together with a significant increase in current inactivation, this is consistent with a loss of channel function. Molecular modeling predicted disruption of a conserved disulfide bond through the C256F variant. CONCLUSIONS: Our results support the pathogenicity of the C256F variant for the SCA phenotype and provide further insight into Cav2.1 structure and function.


Asunto(s)
Canales de Calcio , Ataxias Espinocerebelosas , Canales de Calcio/genética , Disulfuros/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Mutación Missense , Técnicas de Placa-Clamp , Fenotipo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
9.
Front Synaptic Neurosci ; 13: 636103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716705

RESUMEN

The loss of dopamine (DA)-producing neurons in the substantia nigra pars compacta (SN) underlies the core motor symptoms of the progressive movement disorder Parkinson's disease (PD). To date, no treatment to prevent or slow SN DA neurodegeneration exists; thus, the identification of the underlying factors contributing to the high vulnerability of these neurons represents the basis for the development of novel therapies. Disrupted Ca2+ homeostasis and mitochondrial dysfunction seem to be key players in the pathophysiology of PD. The autonomous pacemaker activity of SN DA neurons, in combination with low cytosolic Ca2+ buffering, leads to large somatodendritic fluctuations of intracellular Ca2+ levels that are linked to elevated mitochondrial oxidant stress. L-type voltage-gated Ca2+ channels (LTCCs) contribute to these Ca2+ oscillations in dendrites, and LTCC inhibition was beneficial in cellular and in vivo animal models of PD. However, in a recently completed phase 3 clinical trial, the dihydropyridine (DHP) LTCC inhibitor isradipine failed to slow disease progression in early PD patients, questioning the feasibility of DHPs for PD therapy. Novel evidence also suggests that R- and T-type Ca2+ channels (RTCCs and TTCCs, respectively) represent potential PD drug targets. This short review aims to (re)evaluate the therapeutic potential of LTCC, RTCC, and TTCC inhibition in light of novel preclinical and clinical data and the feasibility of available Ca2+ channel blockers to modify PD disease progression. I also summarize their cell-specific roles for SN DA neuron function and describe how their gating properties allow activity (and thus their contribution to stressful Ca2+ oscillations) during pacemaking.

10.
Pflugers Arch ; 472(8): 1105, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32666275

RESUMEN

The above article was published online with an error in Article title. Author mispronounced the name of a gene (CACNA1D instead of CACAN1D). The correct gene is presented above.

11.
Pflugers Arch ; 472(7): 755-773, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32583268

RESUMEN

The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Canalopatías/genética , Canalopatías/metabolismo , Animales , Humanos , Mutación/genética , Fenotipo
12.
Mol Autism ; 11(1): 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31921405

RESUMEN

Background: There is increasing evidence that de novo CACNA1D missense mutations inducing increased Cav1.3 L-type Ca2+-channel-function confer a high risk for neurodevelopmental disorders (autism spectrum disorder with and without neurological and endocrine symptoms). Electrophysiological studies demonstrating the presence or absence of typical gain-of-function gating changes could therefore serve as a tool to distinguish likely disease-causing from non-pathogenic de novo CACNA1D variants in affected individuals. We tested this hypothesis for mutation S652L, which has previously been reported in twins with a severe neurodevelopmental disorder in the Deciphering Developmental Disorder Study, but has not been classified as a novel disease mutation. Methods: For functional characterization, wild-type and mutant Cav1.3 channel complexes were expressed in tsA-201 cells and tested for typical gain-of-function gating changes using the whole-cell patch-clamp technique. Results: Mutation S652L significantly shifted the voltage-dependence of activation and steady-state inactivation to more negative potentials (~ 13-17 mV) and increased window currents at subthreshold voltages. Moreover, it slowed tail currents and increased Ca2+-levels during action potential-like stimulations, characteristic for gain-of-function changes. To provide evidence that only gain-of-function variants confer high disease risk, we also studied missense variant S652W reported in apparently healthy individuals. S652W shifted activation and inactivation to more positive voltages, compatible with a loss-of-function phenotype. Mutation S652L increased the sensitivity of Cav1.3 for inhibition by the dihydropyridine L-type Ca2+-channel blocker isradipine by 3-4-fold.Conclusions and limitationsOur data provide evidence that gain-of-function CACNA1D mutations, such as S652L, but not loss-of-function mutations, such as S652W, cause high risk for neurodevelopmental disorders including autism. This adds CACNA1D to the list of novel disease genes identified in the Deciphering Developmental Disorder Study. Although our study does not provide insight into the cellular mechanisms of pathological Cav1.3 signaling in neurons, we provide a unifying mechanism of gain-of-function CACNA1D mutations as a predictor for disease risk, which may allow the establishment of a more reliable diagnosis of affected individuals. Moreover, the increased sensitivity of S652L to isradipine encourages a therapeutic trial in the two affected individuals. This can address the important question to which extent symptoms are responsive to therapy with Ca2+-channel blockers.


Asunto(s)
Canales de Calcio Tipo L/genética , Trastornos del Neurodesarrollo/genética , Canales de Calcio Tipo L/fisiología , Señalización del Calcio , Línea Celular , Humanos , Modelos Moleculares , Mutación
13.
Pflugers Arch ; 472(1): 3-25, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31848688

RESUMEN

Cav1.3 L-type Ca2+ channels (LTCCs) in cochlear inner hair cells (IHCs) are essential for hearing as they convert sound-induced graded receptor potentials into tonic postsynaptic glutamate release. To enable fast and indefatigable presynaptic Ca2+ signaling, IHC Cav1.3 channels exhibit a negative activation voltage range and uniquely slow inactivation kinetics. Interaction with CaM-like Ca2+-binding proteins inhibits Ca2+-dependent inactivation, while the mechanisms underlying slow voltage-dependent inactivation (VDI) are not completely understood. Here we studied if the complex formation of Cav1.3 LTCCs with the presynaptic active zone proteins RIM2α and RIM-binding protein 2 (RBP2) can stabilize slow VDI. We detected both RIM2α and RBP isoforms in adult mouse IHCs, where they co-localized with Cav1.3 and synaptic ribbons. Using whole-cell patch-clamp recordings (tsA-201 cells), we assessed their effect on the VDI of the C-terminal full-length Cav1.3 (Cav1.3L) and a short splice variant (Cav1.342A) that lacks the C-terminal RBP2 interaction site. When co-expressed with the auxiliary ß3 subunit, RIM2α alone (Cav1.342A) or RIM2α/RBP2 (Cav1.3L) reduced Cav1.3 VDI to a similar extent as observed in IHCs. Membrane-anchored ß2 variants (ß2a, ß2e) that inhibit inactivation on their own allowed no further modulation of inactivation kinetics by RIM2α/RBP2. Moreover, association with RIM2α and/or RBP2 consolidated the negative Cav1.3 voltage operating range by shifting the channel's activation threshold toward more hyperpolarized potentials. Taken together, the association with "slow" ß subunits (ß2a, ß2e) or presynaptic scaffolding proteins such as RIM2α and RBP2 stabilizes physiological gating properties of IHC Cav1.3 LTCCs in a splice variant-dependent manner ensuring proper IHC function.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Canales de Calcio Tipo L/química , Femenino , Células HEK293 , Células Ciliadas Auditivas Internas/fisiología , Humanos , Activación del Canal Iónico , Masculino , Ratones , Unión Proteica
14.
Proc Natl Acad Sci U S A ; 115(6): 1376-1381, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363593

RESUMEN

The adaptor proteins STAC1, STAC2, and STAC3 represent a newly identified family of regulators of voltage-gated calcium channel (CaV) trafficking and function. The skeletal muscle isoform STAC3 is essential for excitation-contraction coupling and its mutation causes severe muscle disease. Recently, two distinct molecular domains in STAC3 were identified, necessary for its functional interaction with CaV1.1: the C1 domain, which recruits STAC proteins to the calcium channel complex in skeletal muscle triads, and the SH3-1 domain, involved in excitation-contraction coupling. These interaction sites are conserved in the three STAC proteins. However, the molecular domain in CaV1 channels interacting with the STAC C1 domain and the possible role of this interaction in neuronal CaV1 channels remained unknown. Using CaV1.2/2.1 chimeras expressed in dysgenic (CaV1.1-/-) myotubes, we identified the amino acids 1,641-1,668 in the C terminus of CaV1.2 as necessary for association of STAC proteins. This sequence contains the IQ domain and alanine mutagenesis revealed that the amino acids important for STAC association overlap with those making contacts with the C-lobe of calcium-calmodulin (Ca/CaM) and mediating calcium-dependent inactivation of CaV1.2. Indeed, patch-clamp analysis demonstrated that coexpression of either one of the three STAC proteins with CaV1.2 opposed calcium-dependent inactivation, although to different degrees, and that substitution of the CaV1.2 IQ domain with that of CaV2.1, which does not interact with STAC, abolished this effect. These results suggest that STAC proteins associate with the CaV1.2 C terminus at the IQ domain and thus inhibit calcium-dependent feedback regulation of CaV1.2 currents.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Canales de Calcio Tipo L/genética , Calmodulina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Moscas Domésticas , Humanos , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Neurosci ; 37(28): 6761-6777, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28592699

RESUMEN

Ca2+-influx through L-type Ca2+-channels (LTCCs) is associated with activity-related stressful oscillations of Ca2+ levels within dopaminergic (DA) neurons in the substantia nigra (SN), which may contribute to their selective degeneration in Parkinson's disease (PD). LTCC blockers were neuroprotective in mouse neurotoxin models of PD, and isradipine is currently undergoing testing in a phase III clinical trial in early PD. We report no evidence for neuroprotection by in vivo pretreatment with therapeutically relevant isradipine plasma levels, or Cav1.3 LTCC deficiency in 6-OHDA-treated male mice. To explain this finding, we investigated the pharmacological properties of human LTCCs during SN DA-like and arterial smooth muscle (aSM)-like activity patterns using whole-cell patch-clamp recordings in HEK293 cells (Cav1.2 α1-subunit, long and short Cav1.3 α1-subunit splice variants; ß3/α2δ1). During SN DA-like pacemaking, only Cav1.3 variants conducted Ca2+ current (ICa) at subthreshold potentials between action potentials. SN DA-like burst activity increased integrated ICa during (Cav1.2 plus Cav1.3) and after (Cav1.3) the burst. Isradipine inhibition was splice variant and isoform dependent, with a 5- to 11-fold lower sensitivity to Cav1.3 variants during SN DA-like pacemaking compared with Cav1.2 during aSM-like activity. Supratherapeutic isradipine concentrations reduced the pacemaker precision of adult mouse SN DA neurons but did not affect their somatic Ca2+ oscillations. Our data predict that Cav1.2 and Cav1.3 splice variants contribute differentially to Ca2+ load in SN DA neurons, with prominent Cav1.3-mediated ICa between action potentials and after bursts. The failure of therapeutically relevant isradipine levels to protect SN DA neurons can be explained by weaker state-dependent inhibition of SN DA LTCCs compared with aSM Cav1.2.SIGNIFICANCE STATEMENT The high vulnerability of dopamine (DA) neurons in the substantia nigra (SN) to neurodegenerative stressors causes Parkinson's disease (PD). Ca2+ influx through voltage-gated L-type Ca2+ channels (LTCCs), in particular Cav1.3, appears to contribute to this vulnerability, and the LTCC inhibitor isradipine is currently being tested as a neuroprotective agent for PD in a phase III clinical trial. However, in our study isradipine plasma concentrations approved for therapy were not neuroprotective in a PD mouse model. We provide an explanation for this observation by demonstrating that during SN DA-like neuronal activity LTCCs are less sensitive to isradipine than Cav1.2 LTCCs in resistance blood vessels (mediating dose-limiting vasodilating effects) and even at supratherapeutic concentrations isradipine fails to reduce somatic Ca2+ oscillations of SN DA neurons.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Isradipino/metabolismo , Sustancia Negra/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Isradipino/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/efectos de los fármacos
16.
Channels (Austin) ; 10(1): 7-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26039257

RESUMEN

L-type calcium channels are present in most electrically excitable cells and are needed for proper brain, muscle, endocrine and sensory function. There is accumulating evidence for their involvement in brain diseases such as Parkinson disease, febrile seizures and neuropsychiatric disorders. Pharmacological inhibition of brain L-type channel isoforms, Cav1.2 and Cav1.3, may therefore be of therapeutic value. Organic calcium channels blockers are clinically used since decades for the treatment of hypertension, cardiac ischemia, and arrhythmias with a well-known and excellent safety profile. This pharmacological benefit is mainly mediated by the inhibition of Cav1.2 channels in the cardiovascular system. Despite their different biophysical properties and physiological functions, both brain channel isoforms are similarly inhibited by existing calcium channel blockers. In this review we will discuss evidence for altered L-type channel activity in human brain pathologies, new therapeutic implications of existing blockers and the rationale and current efforts to develop Cav1.3-selective compounds.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Humanos
17.
J Biol Chem ; 290(34): 21086-21100, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26100638

RESUMEN

L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio/química , Calcio/metabolismo , Secuencia de Aminoácidos , Canales de Calcio/genética , Canales de Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Línea Celular Transformada , Membrana Celular/química , Membrana Celular/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Transporte Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
18.
Curr Mol Pharmacol ; 8(2): 110-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25966690

RESUMEN

Inhibition of voltage-gated L-type calcium channels by organic calcium channel blockers is a well-established pharmacodynamic concept for the treatment of hypertension and cardiac ischemia. Since decades these antihypertensives (such as the dihydropyridines amlodipine, felodipine or nifedipine) belong to the most widely prescribed drugs world-wide. Their tolerability is excellent because at therapeutic doses their pharmacological effects in humans are limited to the cardiovascular system. During the last years substantial progress has been made to reveal the physiological role of different L-type calcium channel isoforms in many other tissues, including the brain, endocrine and sensory cells. Moreover, there is accumulating evidence about their involvement in various human diseases, such as Parkinson's disease, neuropsychiatric disorders and hyperaldosteronism. In this review we discuss the pathogenetic role of L-type calcium channels, potential new indications for existing or isoform-selective compounds and strategies to minimize potential side effects.


Asunto(s)
Antihipertensivos/farmacología , Encéfalo/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Antihipertensivos/clasificación , Encéfalo/metabolismo , Encéfalo/fisiopatología , Bloqueadores de los Canales de Calcio/clasificación , Canales de Calcio Tipo L/genética , Humanos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Modelos Biológicos , Mutación , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
19.
Nat Commun ; 5: 3897, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24941892

RESUMEN

Cav1.2 and Cav1.3 are the main L-type Ca(2+) channel subtypes in the brain. Cav1.3 channels have recently been implicated in the pathogenesis of Parkinson's disease. Therefore, Cav1.3-selective blockers are developed as promising neuroprotective drugs. We studied the pharmacological properties of a pyrimidine-2,4,6-trione derivative (1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione, Cp8) recently reported as the first highly selective Cav1.3 blocker. Here we show, in contrast to this previous study, that Cp8 reproducibly increases inward Ca(2+) currents of Cav1.3 and Cav1.2 channels expressed in tsA-201 cells by slowing activation, inactivation and enhancement of tail currents. Similar effects are also observed for native Cav1.3 and Cav1.2 channels in mouse chromaffin cells, while non-L-type currents are unaffected. Evidence for a weak and non-selective inhibition of Cav1.3 and Cav1.2 currents is only observed in a minority of cells using Ba(2+) as charge carrier. Therefore, our data identify pyrimidine-2,4,6-triones as Ca(2+) channel activators.


Asunto(s)
Barbitúricos/metabolismo , Agonistas de los Canales de Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Animales , Barbitúricos/química , Agonistas de los Canales de Calcio/química , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA