Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Intervalo de año de publicación
1.
Biochimie ; 207: 1-10, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36403756

RESUMEN

Varespladib (LY315920) is a potent inhibitor of human group IIA phospholipase A2 (PLA2) originally developed to control inflammatory cascades of diseases associated with high or dysregulated levels of endogenous PLA2. Recently, varespladib was also found to inhibit snake venom PLA2 and PLA2-like toxins. Herein, ex vivo neuromuscular blocking activity assays were used to test the inhibitory activity of varespladib. The binding affinity between varespladib and a PLA2-like toxin was quantified and compared with other potential inhibitors for this class of proteins. Crystallographic and bioinformatic studies showed that varespladib binds to PrTX-I and BthTX-I into their hydrophobic channels, similarly to other previously characterized PLA2-like myotoxins. However, a new finding is that an additional varespladib binds to the MDiS region, a particular site that is related to muscle cell disruption by these toxins. The present results further advance the characterization of the molecular interactions of varespladib with PLA2-like myotoxins and provide additional evidence for this compound as a promising inhibitor candidate for different PLA2 and PLA2-like toxins.


Asunto(s)
Bothrops , Venenos de Crotálidos , Toxinas Biológicas , Animales , Humanos , Bothrops/metabolismo , Neurotoxinas , Cetoácidos , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/química , Fosfolipasas A2/química
2.
Mem. Inst. Oswaldo Cruz ; 101(supl.1): 161-165, Oct. 2006.
Artículo en Inglés | LILACS | ID: lil-441242

RESUMEN

The number of sequences generated by genome projects has increased exponentially, but gene characterization has not followed at the same rate. Sequencing and analysis of full-length cDNAs is an important step in gene characterization that has been used nowadays by several research groups. In this work, we have selected Schistosoma mansoni clones for full-length sequencing, using an algorithm that investigates the presence of the initial methionine in the parasite sequence based on the positions of alignment start between two sequences. BLAST searches to produce such alignments have been performed using parasite expressed sequence tags produced by Minas Gerais Genome Network against sequences from the database Eukaryotic Cluster of Orthologous Groups (KOG). This procedure has allowed the selection of clones representing 398 proteins which have not been deposited as S. mansoni complete CDS in any public database. Dedicated sequencing of 96 of such clones with reads from both 5' and 3' ends has been performed. These reads have been assembled using PHRAP, resulting in the production of 33 full-length sequences that represent novel S. mansoni proteins. These results shall contribute to construct a more complete view of the biology of this important parasite.


Asunto(s)
Animales , ADN Complementario/análisis , ADN de Helmintos/genética , Etiquetas de Secuencia Expresada , Análisis de Secuencia de ADN , Schistosoma mansoni/genética , Algoritmos , /genética , /genética , Clonación Molecular
3.
Mem Inst Oswaldo Cruz ; 101 Suppl 1: 161-5, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17308765

RESUMEN

The number of sequences generated by genome projects has increased exponentially, but gene characterization has not followed at the same rate. Sequencing and analysis of full-length cDNAs is an important step in gene characterization that has been used nowadays by several research groups. In this work, we have selected Schistosoma mansoni clones for full-length sequencing, using an algorithm that investigates the presence of the initial methionine in the parasite sequence based on the positions of alignment start between two sequences. BLAST searches to produce such alignments have been performed using parasite expressed sequence tags produced by Minas Gerais Genome Network against sequences from the database Eukaryotic Cluster of Orthologous Groups (KOG). This procedure has allowed the selection of clones representing 398 proteins which have not been deposited as S. mansoni complete CDS in any public database. Dedicated sequencing of 96 of such clones with reads from both 5' and 3' ends has been performed. These reads have been assembled using PHRAP, resulting in the production of 33 full-length sequences that represent novel S. mansoni proteins. These results shall contribute to construct a more complete view of the biology of this important parasite.


Asunto(s)
ADN Complementario/análisis , ADN de Helmintos/genética , Etiquetas de Secuencia Expresada , Schistosoma mansoni/genética , Análisis de Secuencia de ADN , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Algoritmos , Animales , Clonación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...