Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140175

RESUMEN

Creating an effective and safe vaccine is critical to fighting the coronavirus infection successfully. Several types of COVID-19 vaccines exist, including inactivated, live attenuated, recombinant, synthetic peptide, virus-like particle-based, DNA and mRNA-based, and sub-unit vaccines containing purified immunogenic viral proteins. However, the scale and speed at which COVID-19 is spreading demonstrate a global public demand for an effective prophylaxis that must be supplied more. The developed products promise a bright future for SARS-CoV-2 prevention; however, evidence of safety and immunogenicity is mandatory before any vaccine can be produced. In this paper, we report on the results of our work examining the safety, toxicity, immunizing dose choice, and immunogenicity of QazCoVac-P, a Kazakhstan-made sub-unit vaccine for COVID-19. First, we looked into the product's safety profile by assessing its pyrogenicity in vaccinated rabbit models and using the LAL (limulus amebocyte lysate) test. We examined the vaccine's acute and sub-chronic toxicity on BALB/c mice and rats. The vaccine did not cause clinically significant toxicity-related changes or symptoms in our toxicity experiments. Finally, we performed a double immunization of mice, ferrets, Syrian hamsters, and rhesus macaques (Macaca mulatta). We used ELISA to measure antibody titers with the maximum mean geometric titer of antibodies in the animals' blood sera totaling approximately 8 log2. The results of this and other studies warrant recommending the QazCoVac-P vaccine for clinical trials.

2.
Viruses ; 14(12)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36560747

RESUMEN

Bats carry thousands of viruses from 28 different families. To determine the presence of various pathogens in bat populations in Kazakhstan, 1149 samples (393 oropharyngeal swabs, 349 brain samples, 407 guano) were collected. The samples were collected from four species of bats (Vespertilio murinus, Nyctalus noctula, Myotis blythii, Eptesicus serotinus) in nine regions. The Coronavirus RNA was found in 38 (4.75%) samples, and the rabies virus in 27 (7.74%) samples from bats. Coronaviruses and the rabies virus were found in bats in six out of nine studied areas. The RNAs of SARS-CoV-2, MERS, TBE, CCHF, WNF, influenza A viruses were not detected in the bat samples. The phylogeny of the RdRp gene of 12 samples made it possible to classify them as alphacoronaviruses and divide them into two groups. The main group (n = 11) was closely related to bat coronaviruses from Ghana, Zimbabwe and Kenya. The second group (n = 1) was closely related to viruses previously isolated in the south of Kazakhstan. The phylogeny of the N gene sequence from a bat from west Kazakhstan revealed its close relationship with isolates from the Cosmopolitan group of rabies viruses (Central Asia). These results highlight the need for a continuous monitoring of volatile populations to improve the surveillance and detection of infectious diseases.


Asunto(s)
COVID-19 , Quirópteros , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Animales , Kazajstán/epidemiología , Prevalencia , SARS-CoV-2 , Filogenia
3.
Pathogens ; 11(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36297263

RESUMEN

Ticks carry and transmit a wide variety of pathogens (bacteria, viruses and protozoa) that pose a threat to humans and animals worldwide. The purpose of this work was to study ticks collected in different regions of Kazakhstan for the carriage of various pathogens. The collected ticks were examined by PCR for the carriage of various pathogens. A total of 3341 tick samples parasitizing three animal species (cattle, sheep and horses) were collected at eight regions of Kazakhstan. Eight tick species were found infesting animals: Dermacentor marginatus (28.08%), Hyalomma asiaticum (21.28%), Hyalomma anatolicum (17.18%), Dermacentor reticulatus (2.01%), Ixodes ricinus (3.35%), Ixodes persulcatus (0.33%), Hyalomma scupense (12.87%) and Hyalomma marginatum (14.90%). Ticks collected from livestock animals were examined for the pathogen spectrum of transmissible infections to determine the degree of their infection. Four pathogen DNAs (lumpy skin disease virus (LSDV), Coxiella burnetti, Teileria annulata, and Babesia caballi) were detected by PCR in Dermacentor marginatus, Hyalomma asiaticum, Hyalomma scupense, Hyalomma anatolicum. The infection of ticks Dermacentor marginatus and Hyalomma asiaticum collected on cattle in the West Kazakhstan region with LSDV was 14.28% and 5.71%, respectively. Coxiella burnetti was found in the ticks Dermacentor marginatus (31.91%) in the Turkestan region and Hyalomma anatolicum (52.63%) in the Zhambyl region. Theileria annulata was found in ticks Hyalomma scupense (7.32%) and Dermacentor marginatus (6.10%) from cattle in the Turkestan region. Babesia caballi was isolated only from the species Hyalomma scupense (17.14%) in the Turkestan region. There were no PCR-positive tick samples collected from sheep. RNA/DNAs of tick-borne encephalitis virus (TBEV), African swine fever virus (ASFV), Hantavirus hemorrhagic fever with renal syndrome (HFRS), and chlamydia pathogens were not found in ticks. The new data give a better understanding of the epidemiology of tick-borne pathogens and the possibility of the emergence of tick-borne animal diseases in Kazakhstan.

4.
Vaccines (Basel) ; 10(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36298570

RESUMEN

Vaccination with live attenuated vaccines is a key element in the prevention of lumpy skin disease. The mechanism of virus attenuation by long-term passaging in sensitive systems remains unclear. Targeted inactivation of virulence genes is the most promising way to obtain attenuated viruses. Four virulence genes in the genome of the lumpy skin disease virus (LSDV) Dermatitis nodulares/2016/Atyrau/KZ were sequentially knocked out by homologous recombination under conditions of temporary dominant selection. The recombinant LSDV Atyrau-5BJN(IL18) with a knockout of the LSDV005, LSDV008, LSDV066 and LSDV142 genes remained genetically stable for ten passages and efficiently replicated in cells of lamb testicles, saiga kidney and bovine kidney. In vivo experiments with cattle have shown that injection of the LSDV Atyrau-5BJN(IL18) at a high dose does not cause disease in animals or other deviations from the physiological norm. Immunization of cattle with the LSDV Atyrau-5BJN(IL18) induced the production of virus-neutralizing antibodies in titers of 4-5 log2. The challenge did not cause disease in immunized animals. The knockout of four virulence genes resulted in attenuation of the virulent LSDV without loss of immunogenicity. The recombinant LSDV Atyrau-5BJN(IL18) is safe for clinical use, immunogenic and protects animals from infection with the virulent LSDV.

5.
Microbiol Resour Announc ; 11(10): e0114721, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36094178

RESUMEN

Here, we reported the complete coding sequence of the influenza A/equine/Otar/3/2007 (H3N8) equine virus, first isolated in Kazakhstan in 2007. The hemagglutinin (HA) sequences of the Kazakhstan isolates appeared to be closely related to viruses isolated in early 2000 in Asia. Phylogenetic analysis characterized the Kazakhstan isolates as a member of the Florida sublineage clade 2 by the HA protein sequence.

6.
Microorganisms ; 10(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36014002

RESUMEN

Brucellosis is one of the most important and widespread bacterial zoonoses worldwide. Cases are reported annually across the range of known infectious species of the genus Brucella. Globally, Brucella melitensis, primarily hosted by domestic sheep and goats, affects large proportions of livestock herds, and frequently spills over into humans. While some species, such as Brucella abortus, are well controlled in livestock in areas of North America, the Greater Yellowstone Ecosystem supports the species in native wild ungulates with occasional spillover to livestock. Elsewhere in North America, other Brucella species still infect domestic dogs and feral swine, with some associated human cases. Brucella spp. patterns vary across space globally with B. abortus and B. melitensis the most important for livestock control. A myriad of other species within the genus infect a wide range of marine mammals, wildlife, rodents, and even frogs. Infection in humans from these others varies with geography and bacterial species. Control in humans is primarily achieved through livestock vaccination and culling and requires accurate and rapid species confirmation; vaccination is Brucella spp.-specific and typically targets single livestock species for distribution. Traditional bacteriology methods are slow (some media can take up to 21 days for bacterial growth) and often lack the specificity of molecular techniques. Here, we summarize the molecular techniques for confirming and identifying specific Brucella species and provide recommendations for selecting the appropriate methods based on need, sensitivity, and laboratory capabilities/technology. As vaccination/culling approaches are costly and logistically challenging, proper diagnostics and species identification are critical tools for targeting surveillance and control.

7.
Pathogens ; 11(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36014962

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) disease cases are registered annually in endemic regions of Kazakhstan. To study the prevalence of various Crimean-Congo hemorrhagic fever virus (CCHFV) genotypes, a total of 694 ticks were collected from southern regions of Kazakhstan in 2021. Hyalomma marginatum (n = 323) (46.5%), Hyalomma anatolicum (n = 138) (19.9%), Hyalomma asiaticum (n = 126) (18.2%), Hyalomma scupense (n = 80) (11.5%) and Ixodes ricinus (n = 27) (3.9%) were collected using the standardized flagging technique from the environment. All the tick samples were analyzed for the presence of CCHFV RNA by RT-PCR. The CCHF-positive samples were found within three Hyalomma asiaticum and one Ixodes ricinus tick sample. For the first time in Kazakhstan, infection of the Ixodes ricinus tick with CCHFV was detected. The results of sequencing and analysis of the S-gene fragment showed that the Asia 1 and Asia 2 CCHF genotypes circulate in the southern regions of Kazakhstan. Viruses isolated in the Zhambyl and Turkestan regions are assigned to the Asia-2 genotype, whereas the virus isolated in the Kyzylorda region to the Asia-1 genotype.

8.
Virus Res ; 320: 198898, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35995240

RESUMEN

An active surveillance study of avian influenza viruses (AIVs) in wild birds was carried out in Kazakhstan in 2018-2019. In total, 866 samples were collected from wild birds and analyzed for influenza viruses using molecular and virological tests. Genome segments of Asian, European, and Australian lineages were detected in 25 (4.6%) out of 541 waterfowl samples positive for subtype H3N8, and in two (0.6%) out of 325 H3N8 positive samples from terrestrial birds. No highly pathogenic avian influenza virus (AIV) was detected. The results indicated transmission of closely related strains or identical subtypes of AIVs by a flock-unit of migratory birds or annual cyclical pattern of subtype dominance. The simultaneous circulation of genome segments of the Asian, European and Australian genetic lineages of H3N8 AIVs in wild birds in Kazakhstan indicated the important role of Central Asia as a transmission hub of AI viruses linking the East Asian migratory flyways with European flyways and vice versa.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Orthomyxoviridae , Animales , Animales Salvajes , Australia , Aves , Subtipo H3N8 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Kazajstán/epidemiología , Filogenia
9.
Hum Vaccin Immunother ; 18(5): 2087412, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35960911

RESUMEN

This article describes the results of a preclinical safety and immunogenicity study of QazCovid-in®, the first COVID-19 vaccine developed in Kazakhstan, on BALB/c mice, rats, ferrets, Syrian hamsters and rhesus macaques (Macaca mulatta). The study's safety data suggests that this immunobiological preparation can be technically considered a Class 5 nontoxic vaccine. The series of injections that were made did not produce any adverse effect or any change in the general condition of the model animals' health, while macroscopy and histology studies identified no changes in the internal organs of the BALB/c mice and rats. This study has demonstrated that a double immunization enhances the growth of antibody titers as assessed by the microneutralization assay (MNA) and the enzyme-linked immunosorbent assay (ELISA) in a pre-clinical immunogenicity test on animal models. The best GMT results were assessed in MNA and ELISA 7 days after re-vaccination; however, we noted that GMT antibody results in ELISA were lower than in MNA. A comparative GMT assessment after the first immunization and the re-immunization identified significant differences between model animal groups and a growth of GMT antibodies in all of them; also, differences between the gender groups were statistically significant. Moreover, the most marked MNA immune response to the QazCovid-in® vaccine was seen in the Syrian hamsters, while their SARS-CoV-2-specific antibody activity as assessed with ELISA was the lowest.


Asunto(s)
COVID-19 , Vacunas Virales , Cricetinae , Ratones , Animales , Humanos , Ratas , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , SARS-CoV-2 , Macaca mulatta , Mesocricetus , Hurones , Anticuerpos Antivirales , Vacunas de Productos Inactivados/efectos adversos , China , Inmunogenicidad Vacunal , Anticuerpos Neutralizantes
10.
Microbiol Resour Announc ; 11(7): e0038022, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727014

RESUMEN

Here, we present the coding sequence of the genome of the recombinant lumpy skin disease virus (LSDV) Atyrau-5BJN(IL18), obtained by knocking out four genes in the genome of a virulent field LSDV isolate. Genome sequencing confirmed the deletion of genes and the insertion of a foreign sequence in the viral genome.

11.
EClinicalMedicine ; 50: 101526, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35770251

RESUMEN

Background: Vaccination remains the primary measure to prevent the spread of the SARS-CoV-2 virus, further necessitating the use of effective licensed vaccines. Methods: From Dec 25, 2020, to July 11, 2021, we conducted a multicenter, randomised, single-blind, placebo-controlled phase 3 efficacy trial of the QazCovid-in® vaccine with a 180-day follow-up period in three clinical centres in Kazakhstan. A total of 3000 eligible participants aged 18 years or older were randomly assigned (4:1) to receive two doses of the vaccine (5 µg each, 21 days apart) or placebo administered intramuscularly. QazCovid-in® is a whole-virion formaldehyde-inactivated anti-COVID-19 vaccine, adjuvanted with aluminium hydroxide. The primary endpoint was the incidence of symptomatic cases of the SARS-CoV-2 infection confirmed by RT-PCR starting from day 14 after the first immunisation. The trial was registered with ClinicalTrials.gov NCT04691908. Findings: The QazCovid-in® vaccine was safe over the 6-month monitoring period after two intramuscular immunisations inducing only local short-lived adverse events. The concomitant diseases of participants did not affect the vaccine safety. Out of 2400 vaccinated participants, 31 were diagnosed with COVID-19; 43 COVID-19 cases were recorded in 600 placebo participants with onset of 14 days after the first dose within the 180-day observation period. Only one severe COVID-19 case was identified in a vaccine recipient with a comorbid chronic heart failure. The protective efficacy of the QazCovid-in® vaccine reached 82·0% (95% CI 71.1-88.5) within the 180-day observation period. Interpretation: Two immunisations with the inactivated QazCovid-in® vaccine achieved 82·0% (95% CI 71.1-88.5) protective efficacy against COVID-19 within a 180-day follow-up period. Funding: The work was funded by the Science Committee of the Ministry of Education and Science of Kazakhstan within the framework of the Scientific and Technical Program "Development of a vaccine against coronavirus infection COVID-19". State registration number 0.0927.

12.
Transbound Emerg Dis ; 69(5): e1374-e1381, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35106948

RESUMEN

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a camel-borne zoonotic virus endemic across Eastern Africa and the Middle East, with evidence of circulation in Bangladesh and Mongolia. To determine if MERS-CoV was present in Kazakhstan, in 2017-2018, we collected swabs and sera from Bactrian camels (n = 3124) and dromedary (n = 5083). The total seropositivity was 0.54% in Bactrian camels and 0.24% in dromedaries; however, we did not detect MERS-CoV RNA in swab samples. There was no difference in the probability of infection between species or sex, but younger camels had a higher probability of being seropositive, suggesting a recent introduction of the virus to Kazakhstan. The infection of both camel species indicates that they both may play a role as natural reservoirs. These results reinforce the need for continual surveillance, especially at the camel-human interface to understand the risk of zoonotic exposure.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Camelus , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Humanos , Kazajstán/epidemiología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , ARN
13.
Front Microbiol ; 12: 720437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646246

RESUMEN

In March 2020, the first cases of the human coronavirus disease COVID-19 were registered in Kazakhstan. We isolated the SARS-CoV-2 virus from clinical materials from some of these patients. Subsequently, a whole virion inactivated candidate vaccine, QazCovid-in, was developed based on this virus. To develop the vaccine, a virus grown in Vero cell culture was used, which was inactivated with formaldehyde, purified, concentrated, sterilized by filtration, and then adsorbed on aluminum hydroxide gel particles. The formula virus and adjuvant in buffer saline solution were used as the vaccine. The safety and protective effectiveness of the developed vaccine were studied in Syrian hamsters. The results of the studies showed the absolute safety of the candidate vaccine in the Syrian hamsters. When studying the protective effectiveness, the developed vaccine with an immunizing dose of 5 µg/dose specific antigen protected animals from a wild homologous virus at a dose of 104.5 TCID50 /mL. The candidate vaccine induced the formation of virus-neutralizing antibodies in vaccinated hamsters at titers of 3.3 ± 1.45 log2 to 7.25 ± 0.78 log2, and these antibodies were retained for 6 months (observation period) for the indicated titers. No viral replication was detected in vaccinated hamsters, protected against the development of acute pneumonia, and ensured 100% survival of the animals. Further, no replicative virus was isolated from the lungs of vaccinated animals. However, a virulent virus was isolated from the lungs of unvaccinated animals at relatively high titers, reaching 4.5 ± 0.7 log TCID50/mL. After challenge infection, 100% of unvaccinated hamsters showed clinical symptoms (stress state, passivity, tousled coat, decreased body temperature, and body weight, and the development of acute pneumonia), with 25 ± 5% dying. These findings pave the way for testing the candidate vaccine in clinical human trials.

14.
EClinicalMedicine ; 39: 101078, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34414368

RESUMEN

BACKGROUND: A new inactivated whole-virion QazCovid-in® vaccine against COVID-19 was developed from SARS-CoV-2 isolated in Kazakhstan, inactivated by formaldehyde, and adjuvanted with aluminium hydroxide. Phase 1 and 2 clinical trials aimed at assessing the vaccine's safety, immunogenicity, and the duration of immunity induced by the QazCovid-in® vaccine after one or two immunisations. METHODS: From 23.09.2020 to 19.03.2021 we performed a randomised, single-blind, placebo-controlled phase 1 clinical trial and from 18.10.2020 to 17.04.2021 an open-label phase 2 clinical trials of the QazCovid-in® vaccine with a 6 months follow-up at a single centre in Almaty, the Republic of Kazakhstan. Eligible healthy adults aged 18 years and older with no history of laboratory-confirmed SARS-CoV-2 infection were randomly assigned to the treatment groups using a computerised randomisation scheme generator. In the phase 1 clinical trial, two doses of the vaccine (5 µg each) or placebo (0·9% NaCl) were administered intramuscularly to 44 subjects aged 18-50 years, 21 days apart. In the phase 2 trial, 200 healthy participants were randomised into four equal-sized groups according to the age (18-49 or ≥50 years) and either single (day 1) or double (day 1 and 21) vaccination protocol. The primary outcomes were safety and tolerability. The secondary outcome was immunogenicity. The cellular response was measured by a whole-blood cytokine release assay (phase 1 only). The trials were registered with ClinicalTrials.gov NCT04530357. FINDINGS: The QazCovid-in® vaccine was safe and well-tolerated and induced predominantly mild adverse events; no serious or severe adverse events were recorded in both trials. In the phase 1 trial, the percentage of subjects with a fourfold increase of antibody titres (sero conversion) in MNA was 59% after one vaccine dose and amounted to 100% after two doses. Neutralizing antibody titres reached the geometric mean titre (GMT) of 100 after administration of two doses. A statistically significant increase in the levels of pro-inflammatory cytokines after vaccination indicated the Th1-biased response. On day 180, 40% of placebo-treated subjects demonstrated a statistically significant increase in the levels of antibodies measured by both ELISA and MNA, which suggests the infection with SARS-CoV-2. In the phase 2 trial, 100% of subjects aged 18-49 years seroconverted for SARS-CoV-2 on day 21 after the first dose, as indicated by MNA yielding the GMTs of 32 or 30 in the one- and two-dose groups, respectively. Amongst ≥50-year-old subjects, the number of sero conversions in the two- and one-dose groups on day 21 was 94% and 92% with the respective GMTs of 25 and 24. After the second dose, the sero conversion rate reached 100%; however, the GMT was significantly lower when compared with the corresponding value measured in subjects aged 18-49 years (83 vs 143). In both trials, specific antibodies were detected in MNA and ELISA on study day 180, but the titres dropped in comparison to day 42. The results of this study serve as the rationale for the phase 3 study. INTERPRETATION: The QazCovid-in® vaccine is safe and well-tolerated and promotes pronounced humoral immunity which lasts for at least 6 months after double intramuscular immunisation. FUNDING: The work was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan within the framework of the Scientific and Technical Program "Development of a vaccine against coronavirus infection COVID-1900 . State registration number ?.0927.

15.
Trop Anim Health Prod ; 53(1): 166, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33590351

RESUMEN

This study describes the registration of the first cases of lumpy skin disease in July 2016 in the Republic of Kazakhstan. In the rural district of Makash, Kurmangazinsky district of Atyrau region, 459 cattle fell ill and 34 died (morbidity 12.9% and mortality 0.96%). To determine the cause of the disease, samples were taken from sick and dead animals, as well as from insects and ticks. LSDV DNA was detected by PCR in all samples from dead animals and ticks (Dermacentor marginatus and Hyalomma asiaticum), in 14.29% of samples from horseflies (Tabanus bromius), and in one of the samples from two Stomoxys calcitrans flies. The reproductive LSD virus was isolated from organs of dead cattle and insects in the culture of LT and MDBK cells. The virus accumulated in cell cultures of LT and MDBK at the level of the third passage with titers in the range of 5.5-5.75 log 10 TCID50/cm3. Sequencing of the GPCR gene allowed us to identify this virus as a lumpy skin disease virus.


Asunto(s)
Enfermedades de los Bovinos , Ixodidae , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Muscidae , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Kazajstán/epidemiología , Dermatosis Nodular Contagiosa/epidemiología
16.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32675181

RESUMEN

We report the complete coding genome sequence of the influenza A/H3N8 virus, isolated from Anas querquedula in northern Kazakhstan in 2018. Phylogenetic analysis of the surface antigens of strain A/garganey/North-Kazakhstan/45/2018 showed that its hemagglutinin belonged to the Asian line, while its neuraminidase was assigned to the Eurasian group.

17.
Microbiol Resour Announc ; 9(13)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32217669

RESUMEN

We report the near-complete genome sequence of an influenza H5N1 virus strain isolated from a dead swan on the southeastern Caspian seashore in 2006. The results of the surface protein HA phylogenetic analysis showed that the A/swan/Mangystau/3/2006 virus belongs to the EA-nonGsGD clade.

18.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139571

RESUMEN

Here, we present the complete genome sequence of a highly pathogenic strain of avian influenza A virus/domestic goose/Pavlodar/1/05 (H5N1) (GS/1/05), which belongs to clade 2.2. This strain of the influenza virus was isolated in northern Kazakhstan in 2005.

19.
Animals (Basel) ; 10(3)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178349

RESUMEN

Samples collected for PCR from recipient animals tested positive in 5 out of 6 cases, while the virus was isolated from 4 of 6 animals. The clinical signs exhibited by recipient animals were mostly moderate in nature with only one severe case. To our knowledge, this is the first time that transmission of LSDV by three Stomoxys species has been demonstrated, and their role as mechanical vectors of LSDV is indicated.

20.
Hum Vaccin Immunother ; 16(8): 1791-1797, 2020 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32048890

RESUMEN

BACKGROUND: The study was aimed at comparative evaluation of seasonal influenza vaccine RIBSP versus commercial vaccine VAXIGRIP® for immunogenicity and safety in the course of clinical trial phase II on healthy subjects up to 60 years. METHODS: The trial involved 150 subjects in randomized 2:1 groups that received either RIBSP vaccine or comparator vaccine VAXIGRIP®. One dose (0.5 ml) of either vaccine contained 15 µg of hemagglutinin of each influenza virus strain recommended by WHO for the Northern hemisphere in 2016-2017 flu season. The observation period lasted 21 days. The trial was registered at ClinicalTrials.gov identifier NCT03016143. RESULTS: Assessment of immunogenic activity of the vaccine under study showed that in 21 days the portion of participants with 4-fold seroconversions was 80.0% to А/H1N1; 65.0% to А/H3N2 and 64.0% to B virus. Antibody titer increase factor in the group of subjects that received RIBSP vaccine was 13.4 for А/H1N1; 5.2 for А/H3N2 and 5.2 for B virus. The subjects that received RIBSP vaccine demonstrated 88% seroprotection rate against А/H1N1; 75% against А/H3N2 and 61% against B virus. In the course of evaluating the vaccine safety, no serious adverse events were recorded. All changes of laboratory data were slight and single in most cases. All recorded local reactions have been light in character and these have been predicted reactions observed at vaccination against influenza. CONCLUSION: Comparison vaccines RIBSP and VAXIGRIP®, showed similar immunogenic activity. The RIBSP vaccine is safe and immunogenic for the elderly and conforms to international criteria in CPMP/BWP/214/96.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anciano , Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Kazajstán , Vacunas de Productos Inactivados/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...