Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(23): eadh4787, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285441

RESUMEN

Bilirubin, a potent antioxidant, is a product of heme catabolism in heterotrophs. Heterotrophs mitigate oxidative stress resulting from free heme by catabolism into bilirubin via biliverdin. Although plants also convert heme to biliverdin, they are generally thought to be incapable of producing bilirubin because they lack biliverdin reductase, the enzyme responsible for bilirubin biosynthesis in heterotrophs. Here, we demonstrate that bilirubin is produced in plant chloroplasts. Live-cell imaging using the bilirubin-dependent fluorescent protein UnaG revealed that bilirubin accumulated in chloroplasts. In vitro, bilirubin was produced nonenzymatically through a reaction between biliverdin and reduced form of nicotinamide adenine dinucleotide phosphate at concentrations comparable to those in chloroplasts. In addition, increased bilirubin production led to lower reactive oxygen species levels in chloroplasts. Our data refute the generally accepted pathway of heme degradation in plants and suggest that bilirubin contributes to the maintenance of redox status in chloroplasts.


Asunto(s)
Bilirrubina , Biliverdina , Bilirrubina/metabolismo , Biliverdina/metabolismo , Oxidación-Reducción , Hemo/metabolismo , Cloroplastos/metabolismo
2.
PNAS Nexus ; 1(2): pgac030, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36713324

RESUMEN

Plant cells perceive cold temperatures and initiate cellular responses to protect themselves against cold stress, but which cellular compartment mediates cold sensing has been unknown. Chloroplasts change their position in response to cold to optimize photosynthesis in plants in a process triggered by the blue-light photoreceptor phototropin (phot), which thus acts as a cold-sensing molecule. However, phot in plant cells is present in multiple cellular compartments, including the plasma membrane (PM), cytosol, Golgi apparatus, and chloroplast periphery, making it unclear where phot perceives cold and activates this cold-avoidance response. Here, we produced genetically encoded and modified variants of phot that localize only to the cytosol or the PM and determined that only PM-associated phot-induced cold avoidance in the liverwort Marchantia polymorpha. These results indicate that the phot localized to the PM constitutes a cellular compartment for cold sensing in plants.

3.
PeerJ ; 5: e3779, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28894649

RESUMEN

Particle bombardment is a powerful and relatively easy method for transient expression of genes of interest in plant cells, especially those that are recalcitrant to other transformation methods. This method has facilitated numerous analyses of subcellular localization of fluorescent fusion protein constructs. Particle bombardment delivers genes to the first layer of plant tissue. In leaves of higher plants, epidermal cells are the first cell layer. Many studies have used the epidermal cell layer of onion bulb (Allium cepa) as the experimental tissue, because these cells are relatively large. However, onion epidermal cells lack developed plastids (i.e., chloroplasts), thereby precluding subcellular localization analysis of chloroplastic proteins. In this study, we developed a protocol for particle bombardment of the aquatic plant Egeria densa, and showed that it is a useful system for subcellular localization analysis of higher plant proteins. E. densa leaflets contain only two cell layers, and cells in the adaxial layer are sufficiently large for observation. The cells in both layers contain well-developed chloroplasts. We fused fluorescent proteins to conventional plant localization signals for the nucleus, cytosol, mitochondria, peroxisome, and chloroplast, and used particle bombardment to transiently express these fusion constructs in E. densa leaves. The plant subcellular localization signals functioned normally and displayed the expected distributions in transiently transformed E. densa cells, and even chloroplastic structures could be clearly visualized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...